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ABSTRACT

Time series anomaly detection is essential for maintaining robustness in dynamic
real-world systems. However, most existing methods rely on static distribution
assumptions, while overlooking the latent causal structures and structural shifts
that underlie real-world temporal dynamics. This often leads to poor explana-
tion of anomalies and misclassification of environment-induced variations. To
address these shortcomings, we propose Causal Soft Jump Diffusion Anomaly
Detection (CSJD-AD), a novel framework that models both latent dynamics and
soft-gated expected jumps through a structural jump diffusion process. We adopt
a causal perspective grounded in environment-conditioned invariance by infer-
ring discrete environment states and conditioning the jump-augmented process
on them, yielding a practical detector for unlabeled sensor streams without aim-
ing to identify true interventions. By generating paired counterfactual and factual
trajectories, the model explicitly contrasts causally consistent behavior with un-
explained deviations. Our method achieves state-of-the-art performance across
benchmark datasets, demonstrating the importance of incorporating causal rea-
soning and jump-aware dynamics into time series anomaly detection.

1 INTRODUCTION

Time series anomaly detection (TSAD) plays a pivotal role in modern data analysis by identifying
unexpected or irregular patterns within sequential data streams. In industry, it enables predictive
maintenance by spotting abnormal sensor readings, while in finance, it helps detect fraud through
unusual trading behaviors Yang et al. (2024); Livernoche et al. (2023). Beyond these domains,
anomaly detection is also indispensable in applications such as quality control, e-commerce ana-
lytics, environmental monitoring of smart grids, and Internet of Things infrastructure Pinaya et al.
(2022); Yang et al. (2024). As time series data grows in volume and complexity, robust and adaptive
detection methods become indispensable. Machine learning and deep models have demonstrated
enhanced accuracy and scalability over traditional statistical techniques, navigating challenges such
as seasonality, noise, and evolving patterns. Thus, developing advanced, robust, and context-aware
anomaly detection models is both timely and essential for maintaining reliability and enabling proac-
tive decision-making in real-world systems Blázquez-Garcı́a et al. (2021).

Recent advances in deep learning have greatly enhanced TSAD by harnessing neural networks’ ex-
pressive power. Recurrent models Bontemps et al. (2016); Ergen & Kozat (2019) are widely used to
capture temporal dependencies and forecast future values, with deviations from predicted trajecto-
ries serving as anomaly indicators. Convolutional Neural Networks (CNNs) Ren et al. (2019); Yang
et al. (2023)are also employed to extract local temporal patterns and Transformer Song et al. (2018);
Yue et al. (2022) have shown strong performance in long-range sequence modeling, enabling better
detection in datasets with complex seasonal and contextual dependencies. Generative approaches,
including GAN-based detectors Du et al. (2021); Zhou et al. (2019), have been applied to learn the
distribution of normal sequences, using discriminator feedback or likelihood-based scoring to detect
anomalies.

Despite these success, most methods assume a stationary data-generating process and overlook la-
tent causal structures, even though real-world environments often exhibit distribution shifts driven
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by discrete changes in underlying causal mechanisms Carvalho et al. (2023). Unlike images or
event logs with curated labels, most operational time series are raw sensor outputs without envi-
ronment/state annotations. The regime that determines what is normal is latent, piecewise-constant,
and changes at unknown times, so identical observations can be benign in one regime and faulty in
another. For example, in industrial monitoring, a spike in machine temperature may be expected
during active operational load but highly abnormal during scheduled maintenance or idle states, de-
spite having similar marginal statistics. These context-dependent variations are not anomalies by
itself, but reflect different underlying environment regimes. Absent an explicit regime model, de-
tectors routinely misclassify benign shifts as anomalies, degrading alert reliability and obscuring
why alarms fire. Reconstruction- and density-based methods are especially vulnerable because they
score deviations from a stationary reference rather than regime-conditioned normality.

We address this gap with an environment-conditioned jump-diffusion model that introduces a dis-
crete environment variable E to encode the regime governing observation generation dynamics con-
ditional on E under a causally motivated invariance perspective, making drift and volatility stable
within each regime and flagging only structural violations. Unlike traditional jump diffusion process
Merton (1976), our soft-gated jumps model real-world anomalies more effectively. We replace the
fixed exogenous jump process by parameterizing the jump activation probability as pE = fψ(U,E),
where fψ conditions on the latent state and the inferred environment. Rather than sampling a binary
gate, we inject the expected jump contribution pE JE(Ut, Et) directly at each macro-step boundary.
This design learns context sensitive jump timing from data, keeps activations sparse by suppressing
jumps in stable regimes and increasing them under regime driven volatility, and improves anomaly
discrimination by separating structural changes from environment induced variation.

Building upon this environment-aware jump diffusion formulation, we introduce a mechanism for
modeling the causal invariance objective through dual latent trajectory generation. In our frame-
work, using only the drift and diffusion terms conditioned on the current environment E, we simu-
late how the system would evolve if no abrupt perturbation occurred. The counterfactual trajectory,
constructed using only these components, models how the system evolves under its current envi-
ronment regime. As such, it already accounts for all expected or structured changes that arise as
part of normal transitions across operating conditions. In contrast, the factual trajectory introduces a
jump term that is deterministically weighted via a learned gating propensity. These jumps represent
infrequent, irregular deviations that cannot be explained by the environment-driven dynamics alone.

By explicitly separating causally consistent transitions from unexplained deviations, our model,
CSJD-AD defines a principled training signal: the discrepancy between factual and counterfac-
tual trajectories quantifies structural violations. This causal contrastive loss focuses learning on
environment-invariant irregularities, enhancing the model’s sensitivity to meaningful anomalies. In
short, the main contributions of this papers are summarized as follows:

• We introduce a discrete environment variable E that, under an invariance perspective, con-
ditions the drift, diffusion, and gated expected jump to disentangle environment-consistent
changes from true anomalies.

• We propose an environment-conditioned jump diffusion formulation with a learnable soft
gating mechanism that jointly models smooth dynamics and abrupt structural transitions,
enabling context-aware and interpretable anomaly detection.

• We construct dual latent trajectories, factual and counterfactual, to improve shift–robust
anomaly detection via conditional invariance.

• A unified training objective integrates reconstruction fidelity, variational stability, and
causal contrast, resulting in a robust and interpretable framework for TSAD.

2 RELATED WORK

Pattern-Deviation Methods: This family of methods detect anomalies by measuring how much
a subsequence deviates from learned global or local patterns. They define normality based on sta-
tistical regularities, neighborhood structures, or clustering, and flag subsequences as anomalous if
they exhibit low likelihood, weak pattern similarity, or sparse local density. For example NormA
Boniol et al. (2021), which computes anomaly scores based on the weighted distance of time se-
ries subsequences to clustered normal patterns, and Series2Graph Boniol & Palpanas (2020), which
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constructs a transition graph of subsequence patterns and detects anomalies via low-degree and low-
weight graph trajectories.

Forecasting-based Methods: These methods Ding et al. (2018); Dai & Chen (2022) detect anoma-
lies by learning to predict future points or subsequences from recent observations. A prediction
model is trained on normal data, and anomalies are identified when actual observations deviate sig-
nificantly from their predicted values. Typically, a sliding window is used to forecast one point at
a time, making this approach well-suited for streaming settings where anomalous events are rare.
For example, AD-LTI Wu et al. (2020) detects anomalies by combining seasonal decomposition
with GRU forecasting and introduces a Local Trend Inconsistency score to account for unreliable
historical trends. DeepAnt Munir et al. (2018) is a lightweight CNN-based model that detects point
and contextual anomalies with minimal training data and tolerates mild data contamination. GTA
Chen et al. (2021) uses transformers and graph convolutions to model temporal and inter-sensor
dependencies in multivariate time series for semi-supervised anomaly detection.

Reconstruction-based Methods: These methods detect anomalies by learning to reconstruct nor-
mal time series patterns. Unlike forecasting models, they use full context, including the current
input, for richer representations. Trained on normal subsequences via sliding windows and latent
embeddings, they flag anomalies by identifying high reconstruction errors or low reconstruction
probabilities during inference, capturing subtle deviations from expected behavior. For example,
VAE-GAN Niu et al. (2020) combines variational autoencoding and adversarial learning to detect
anomalies using both reconstruction errors and discriminator feedback in a semi-supervised setting.
TranAD Tuli et al. (2022) enhances transformer-based anomaly detection with adversarial training
to amplify subtle anomalies and uses self-conditioning to improve stability and generalization.

3 METHODOLOGY

3.1 PROBLEM SETTING

We address TSAD under both semi-supervised and unsupervised paradigms. In the semi-supervised
setting, the model is trained on normal data to learn a representation of typical temporal dynamics,
then identifies deviations caused by faults or external disruptions as anomalies during inference.
Formally, given an observed series X = {x1, . . . , xT } with xt ∈ Rd (d = 1 for univariate and
d > 1 for multivariate cases), the objective is to capture the structure of normal behavior and detect
departures. We also evaluate our approach in an unsupervised setting, where anomalies are detected
solely based on the intrinsic properties of the data without reliance on labeled normal samples.

3.2 VARIATIONAL CAUSAL ENCODER

Given an observed time series segment X ∈ RT×d, our goal is to encode it into two types of
latent representations: a latent mapping matrix U ∈ RT×k capturing the temporal data’s underlying
dynamics, each row Ut summarizes step-t latent features and each column indexes a latent channel
shared across the window, and a discrete environment variable E ∈ ∆K−1 (a probability simplex
over K environments) that serves as an unsupervised index for regime-conditioned latent dynamics
and conveys causal semantics through conditioning and counterfactual-style simulation rather than
structural identification.

We achieve this via a shared neural encoder CausalEncoder(X) that produces the variational poste-
riors: qϕ(U | X), qϕ(E | X), where ϕ denotes the encoder parameters. Specifically, U is sampled
from a Gaussian distribution with learnable mean and variance:

qϕ(U | X) = N (µU (X), diag(σ2
U (X))), (1)

and E is sampled using the Gumbel-Softmax reparameterization to approximate a categorical dis-
tribution in a differentiable manner, yielding a soft one-hot vector that is then used to to condition
downstream network components:

qϕ(E | X) = GumbelSoftmax(logitsE(X)), (2)

each regime k therefore parameterizes its own drift, diffusion, and jump functions; we use the sub-
script (·)E to denote conditioning on E, conveying causal semantics via environment-conditioned
invariances.
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3.3 CAUSAL SOFT JUMP DIFFUSION SDE

Building on our motivation, the need to separate causally consistent regime shifts from true anoma-
lies, we now present the formal dynamics that drive our latent representations. Throughout, we
retain the intuition of jump diffusion processes while adopting fully differentiable formulation.

3.3.1 FROM JUMP DIFFUSION TO SOFT JUMP DIFFUSION

In the classical jump diffusion framework Merton (1976), the latent state Ut ∈ Rd evolves according
to

dUt = µ(Ut) dt + σ(Ut) dWt + J(Ut) dNt, (3)
where Nt is a Poisson process of fixed rate and each jump contributes a discrete increment of size
JE(Ut). However, the discrete sampling to Poisson variables breaks gradient flow, complicating
end-to-end learning. Neural Jump SDEs Jia & Benson (2019) and the NJDTPP Zhang et al. (2024)
are built for event prediction, they tie jumps to observed event and train by maximizing event-time
likelihood, which limits their use on densely sampled sensor streams without event timestamps.

To reconcile expressive power with differentiability and utilize a mechanism to decide dynamically
when a jump should or should not occur based on the current context, we model the latent state
Ut ∈ Rd as a continuous diffusion process interspersed with instantaneous soft jumps at macro-grid
times {τj}Jj=0. Concretely, for j = 0, . . . , J − 1 we write

dUt = µE
(
Ut, E

)︸ ︷︷ ︸
drift net

dt + σE
(
Ut, E

)︸ ︷︷ ︸
diffusion net

dWt,

Uτj+1 = Uτ−
j+1

+ pE
(
Uτ−

j+1
, E

)
︸ ︷︷ ︸

soft gate

JE
(
Uτ−

j+1
, E

)
︸ ︷︷ ︸

jump net

, (4)

where Uτ−
j+1

= limt↑τj+1
Ut.

For each t ∈ (τj , τj+1], the latent state follows a diffusion driven by a Brownian motion Wt. At
t = τj+1, we apply an instantaneous soft jump of magnitude pE(Uτ−

j+1
, E) JE(Uτ−

j+1
, E). In prac-

tice, we restrict to one expected soft jump per window. This aligns the model with the windowing
granularity used for evaluation and serves as a first-moment approximation of the cumulative jump
effect of a compound-Poisson process over the window,

∫
J dN ≈ pEJE . Here the scalar gate

pE ∈ (0, 1) encodes the propensity of a structural shock conditioned on the current latent state and
environment Etk , whereas JE specifies its direction and scale. Positive entries are excitatory and
negative entries are inhibitory. Detailed statements and proofs are provided in Appendix B.

3.4 CAUSAL PATH GENERATION

We evolve the window-level matrix state Us ∈ RT×k along solver time s ∈ [0, 1] while preserving
its T × k layout. Given the encoded latent state U0 and environment E, we evolve the process over
M micro-steps of size δt = ∆t/M :

U (m+1) = U (m) + µE
(
U (m), E

)
δt+ σE

(
U (m), E

)√
δt ϵm, ϵm ∼ N (0, I), (5)

with U (0)=U0. The last state U (M) is the counterfactual latent, denoted UCF.

Then we inject the expected jump contribution,
UF = UCF + pE

(
UCF, E

)
JE

(
UCF, E

)
, (6)

where pE ∈ (0, 1) is a learnable propensity and JE encodes jump magnitude. This implements
one expected soft jump at the window boundary per window, consistent with the macro grid in the
section 3.3.

Finally, we blend the two trajectories Ufinal = UCF + γ(UF −UCF ), γ ∈ [0, 1], and reconstruct the
observation via Xgen = Decoder(Ufinal), where γ controls the strength of jump influence, allowing
smooth interpolation between counterfactual and factual paths. We define γ as a hyperparameter
and the settings are provided in Table 8 of Appendix D.

This soft-jump formulation preserves the causal intuition of jump diffusion, pEJE increases only in
volatile regimes while remaining fully differentiable.
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Figure 1: Overall model structure. X is encoded into latent U and environment E, evolved by
drift–diffusion dynamics to a counterfactual path, perturbed by a gated jump to yield the factual
path, blended into Ufinal, and finally decoded back to Xgen.

3.5 INFERENCE TRAINING WITH COUNTERFACTUAL LOSS

Building on the dual-path simulation framework, we introduce a principled loss formulation that
enforces meaningful causal representations and stable variational inference.

Causal Discrepancy Weight. Before introducing the losses, we define a causal discrepancy
weight that modulates the contrastive term during training. It quantifies the magnitude of the
environment-conditioned jump and its improbability. The weight is

WCD(X) = ∥JE∥1 · (1− pE). (7)

Loss Components. We minimize the total loss:

Ltotal = Lrecon + λcausal · Lcausal + λkl · (LUKL + LEunif), (8)

where λcausal and λkl control regularization strength.

The reconstruction loss Lrecon = |X −Xgen|2, ensures that latent variables capture observable pat-
terns, enabling anomaly detection via reconstruction error.

The causal contrastive loss Lcausal = |UF − UCF|2 · WCD(X), promotes consistency between factual
and counterfactual latent paths in stable regimes, while allowing divergence when jumps occur,
regularizing behavior and supporting unsupervised anomaly scoring.

Finally, the KL terms Kingma & Welling (2013); Pereyra et al. (2017) regularize the latent space
and the environment variable:

LUKL := DKL(qϕ(U |X)∥N (0, I)), LEunif := Eqϕ(E|X)

[
K∑
e=1

Ee log
(
Ee + ε

)]
, (9)

here LEunif is a negative-entropy regularizer on qϕ(E | X), promoting smooth latent representations.
Together, these losses ensure stable training and improve generalization across diverse regimes.

3.6 CSJD-AD OVERALL PIPELINE

Figure 1 shows the full CSJD-AD pipeline. The variational encoder maps each input window X
to a latent state U and a environment code E. A drift network µE(·) and diffusion network σE(·),
both conditioned on E, advance U through an Euler–Maruyama step to generate the counterfactual
trajectory UCF. A jump module, likewise conditioned on E, outputs a jump magnitude JE(UCF,E)
and gate pE(UCF,E); adding the gated jump yields the factual state UF as described in Equation(6).
The model blends the two paths via a coefficient γ to obtain the final latent Ufinal, which the decoder
transforms back into Xgen. Training minimizes the reconstruction error, the causal contrastive loss,
and KL regularization on both U and E.
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Table 1: Statistics of the seven anomaly-detection datasets. AR stands for Anomaly Ratio.

Dataset Dimension Entity Train Test AR

ASD 19 12 37,089 49,452 0.295
ECG 2 9 6,999 2,851 0.153
MSL 55 27 58,317 73,729 0.198
SMD 38 28 878,560 702,848 0.131
WADI 127 1 784,173 172,604 0.073
Yahoo 1 56 30,456 7,614 0.036
KPI 1 26 396,211 566,316 0.095

At inference, we use the total objective as an energy score, S(X) = Ltotal(X), treating the KL-type
terms as data-dependent posterior complexity penalties; constants (e.g., logK) are dropped and
λcausal, λkl are fixed from training. For completeness, we report the variant in Table 7 in Appendix
D.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Benchmark Datasets. We evaluate our model on five multivariate time series anomaly detection
datasets: ASD Li et al. (2021), ECG Keogh et al. (2005), MSL Hundman et al. (2018), SMD Su et al.
(2019a), and WADI Ahmed et al. (2017), and two univariate datasets: Yahoo Laptev et al. (2015)
and KPI Li et al. (2022), all with point-wise anomaly labels. Table 1 illustrates the details for each
dataset. The multivariate datasets follow a semi-supervised setting, assuming access to anomaly-free
training data. In contrast, the univariate datasets lack predefined train/test splits, requiring manual
partitioning. As a result, we cannot guarantee the absence of anomalies in the training sets, placing
these datasets in an unsupervised setting. For Yahoo and KPI, we exclude entities that contain no
anomalies in the test set, since the F1 score would otherwise be undefined.

Evaluation Metrics. We evaluate each model using the standard F1 score and the average Area
Under the Precision-Recall Curve (AUCPR) across entities. We do not use point-adjusted F1 be-
cause it credits an entire anomaly segment when any single point crosses the threshold, which can
push random or diffuse predictions to high F1 and inflate scores on long segments Kim et al. (2022).

Many datasets contain multiple entities without aligned timestamps, so we train models separately
for each. Since F1 is not additive, unlike many baselines that average per-entity F1, we aggregate
true/false positives and negatives across entities and recompute the F1 from the combined confusion
matrix. For multi-entity datasets, we report the mean and standard deviation of AUCPR. For WADI,
which has only one entity, AUCPR standard deviation is not available.

Since CSJD-AD integrates a jump-diffusion SDE with explicit Euler rollout, which raises natural
concerns about stepwise simulation cost, we report runtime and GPU memory to demonstrate fea-
sibility, and we observe mid-range efficiency comparable to recent 2024 and 2025 deep learning
baselines. The details are provided in Table 6 in Appendix A.3.

Baseline Models. We evaluate eleven TSAD methods, including VAE-based models (LSTM-VAE
Park et al. (2018), OmniAnomaly Su et al. (2019b)), transformer-based approaches (TranAD Tuli
et al. (2022), PUAD Li et al. (2023), AnomalyTran Lai et al. (2023a), NPSR Lai et al. (2023b), Dual-
TF Nam et al. (2024), Sensitive-HUE Feng et al. (2024)), a diffusion-based model D3R Wang et al.
(2023), a hybrid diffusion–TCN model IGCL Zhao et al. (2025) and a CNN-MLP model RedLamp
Obata et al. (2025).
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Table 2: Time-series anomaly-detection performance on seven public benchmarks (higher is better).
Best scores are in bold; second–best are underlined. The Table 10 in Appendix include Precision
and Recall as an extended version.

Method Metric Multivariate Benchmarks Univariate Benchmarks
ASD ECG MSL SMD WADI Yahoo KPI

LSTM-VAE F1 0.327 0.274 0.407 0.367 0.248 0.326 0.182
AUCPR 0.245±.180 0.206±.150 0.285±.249 0.395±.257 0.139 0.255±.152 0.135±.120

OmniAnomaly F1 0.238 0.216 0.271 0.459 0.229 0.340 0.201
AUCPR 0.175±.132 0.154±.152 0.149±.182 0.365±.202 0.120 0.245±.218 0.140±.010

AnomalyTran F1 0.425 0.464 0.344 0.304 0.102 0.372 0.303
AUCPR 0.281±.201 0.306±.221 0.236±.237 0.273±.232 0.040 0.261±.182 0.204±.139

TranAD F1 0.305 0.461 0.420 0.386 0.263 0.484 0.287
AUCPR 0.238±.178 0.368±.251 0.278±.239 0.412±.260 0.139 0.691±.324 0.285±.206

D3R
F1 0.253 0.301 0.197 0.326 0.117 0.201 0.152

AUCPR 0.150±.110 0.180±.131 0.138±.101 0.228±.167 0.070 0.120±.080 0.090±.061

PUAD F1 0.351 0.382 0.384 0.364 0.259 0.301 0.284
AUCPR 0.280±.203 0.304±.221 0.307±.102 0.291±.210 0.155 0.240±.172 0.224±.152

NPSR F1 0.350 0.451 0.373 0.372 0.613 0.550 0.321
AUCPR 0.281±.200 0.405±.281 0.336±.241 0.335±.245 0.552 0.495±.344 0.288±.160

Dual-TF F1 0.661 0.538 0.127 0.287 0.551 0.352 0.126
AUCPR 0.628±.212 0.511±.182 0.124±.126 0.215±.074 0.523 0.317±.190 0.124±.126

Sensitive-HUE F1 0.366 0.309 0.451 0.397 0.699 0.281 0.170
AUCPR 0.340±.188 0.410±.245 0.432±.121 0.462±.283 0.641 0.489±.429 0.227±.253

IGCL F1 0.022 0.094 0.223 0.208 0.014 0.201 0.208
AUCPR 0.079±.066 0.183±.141 0.179±.102 0.126±.132 0.218 0.300±.277 0.206±.198

RedLamp F1 0.205 0.165 0.284 0.113 0.624 0.299 0.057
AUCPR 0.154±.103 0.200±.196 0.199±.290 0.128±.140 0.564 0.653±.409 0.089±.129

Ours F1 0.676 0.586 0.467 0.575 0.701 0.703 0.346
AUCPR 0.682±.193 0.627±.161 0.464±.296 0.637±.183 0.653 0.937±.200 0.342±.242

4.2 OVERALL EXPERIMENT RESULTS

Table 2 reports F1 and AUCPR. The extended table with precision and recall, together with training
settings and resource usage, appears in Appendices A and D. We fix the window size to 200 on all
datasets to limit hyperparameter effects. While many baselines tune the window per dataset, our
model delivers strong and consistent results without such tuning.

Our model achieves state-of-the-art performance across all time series anomaly detection bench-
marks, consistently outperforming existing methods in both F1 and AUCPR metrics. As shown
in Table 2, our model demonstrates strong robustness under severe class imbalance. For instance,
on the Yahoo and ECG datasets—both characterized by extremely low anomaly ratios—we achieve
AUCPR scores of 0.937 and 0.627, respectively. These represent relative improvements of over 20%
compared to the next-best models (TranAD with 0.691 on Yahoo and Dual-TF with 0.511 on ECG),
highlighting the model’s superior ability to maintain precision and recall in imbalanced settings.

Beyond multivariate benchmarks, our method performs strongly on univariate datasets, demonstrat-
ing adaptability across data regimes and flexibility in semi-supervised and unsupervised settings
over a broad range of temporal dimensionalities.

4.3 ABLATION STUDY

4.3.1 COMPONETS EFFECTIVENESS

We evaluate four ablated variants of our model by disabling each key component in isolation, while
keeping all other settings fixed. The w/o UF variant removes the factual path UF and omits the causal
loss Lcausal accordingly. The w/o pE variant removes the gating head and injects a deterministic jump
once per window. The w/o E variant replaces the causal encoder with a standard encoder which
only outputs the continuous latent variable U , and disabling the KL loss LKL. In the w/o Lcausal, we

7
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Table 3: Ablation study of the proposed model. Each column reports F1 scores (higher is better).
Bold numbers denote the best result for that dataset. The Table 11 in Appendix is the extended
version that includes the AUCPR results.

Variant ASD ECG MSL SMD WADI Yahoo KPI

w/o UF 0.562 0.573 0.463 0.563 0.682 0.662 0.194
w/o pE 0.675 0.604 0.445 0.568 0.696 0.698 0.310
w/o E 0.571 0.552 0.455 0.575 0.678 0.618 0.118

w/o Lcausal 0.682 0.566 0.464 0.563 0.685 0.703 0.250
w/o LKL 0.680 0.578 0.465 0.571 0.681 0.655 0.188

Default 0.676 0.586 0.467 0.575 0.701 0.703 0.346

Figure 2: The two UMAP plots on the left show the embedded latents and environmental latents from
the Causal Encoder for the WADI dataset. The two UMAP on the right present the corresponding
latents for the SMD dataset.

retain the computation of UF and UCF but omit the trajectory contrastive learning objective during
training. Finally, the w/o LKL variant disables both the Gaussian-prior KL penalty and the entropy
regularization, while preserving the causal encoder that extracts the environmental variable E.

As shown in Table 3, most ablations lead to a consistent decline in detection performance across
all seven datasets. Notably, some ablated variants still achieve performance comparable to existing
state-of-the-art methods on certain benchmarks. For instance, on the SMD dataset, the w/o E variant
performs similarly to the full model, suggesting that SMD may contain a single dominant environ-
mental regime, thereby diminishing the benefit of explicit environment modeling. Additionally, on
the ASD dataset, removing Lcausal and LKL constrain yields slightly better performance; however,
the environmental variable E, the factual path UF, and the counterfactual path UCF remain essential
components, as their presence continues to support overall model performance.

4.3.2 CAUSAL ENVIRONMENT REPRESENTATION QUALITY

We test whether the encoder discovers discrete regimes by projecting the learned embeddings with
UMAP and clustering with K-Means using the preset E. We run K-Means with K equal to the pre-
specified environments and color each point by its cluster assignment. As Figure 2 shows, the plots
of E form K tight, well-separated clouds, confirming that the model has encoded each environment
into a distinct region of the latent simplex. By contrast, the U embeddings for WADI appear as
scattered but well-separated clouds, whereas SMD forms coherent arcs. In both cases, coloring each
U point by argmax(E) shows that every latent falls strictly within its corresponding E cluster.
This confirms that it always respects the discrete regimes encoded by E even when U is diffuse or
varying. Overall, these results validate that (1) our encoder disentangles a small number of causal
regimes in E, and (2) the primary latent U varies within each regime, exactly as designed.

To testify that the model uses the environment code E at inference rather than treating it as a re-
dundant head. We train the model normally with learned E. At test time we compare three set-
tings: Default uses each window’s inferred E; Single-E forces all windows to the most frequent E;
Shuffled-E randomly permutes the inferred E across windows and recomputes the score. As Table 4
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Table 4: Effect of modifying learned environment settings on F1 performance (higher is better).
Best scores for each dataset within a block are shown in bold. Table 12 in Appendix is an extended
version that includes AURCPR. Default corresponds to training with correctly learned environment
variables.

Strategy ASD ECG MSL SMD WADI Yahoo KPI

Single E 0.654 0.585 0.463 0.575 0.693 0.703 0.306
Shuffled E 0.539 0.470 0.404 0.396 0.685 0.501 0.143

Default 0.676 0.586 0.467 0.575 0.701 0.703 0.346

Table 5: Effect of noise and missing-value settings on F1 performance (higher is better). Best scores
for each dataset within a block are shown in bold. Default corresponds to training with no added
noise or missing values. The Table 13 in Appendix is the extended version that includes the AUCPR
results.

Strategy Level ASD ECG MSL SMD WADI Yahoo KPI

Noise level
0.10 0.652 0.584 0.451 0.569 0.697 0.669 0.218
0.05 0.642 0.594 0.458 0.574 0.723 0.694 0.277
0.01 0.703 0.600 0.457 0.575 0.715 0.707 0.353

Missing ratio
0.40 0.631 0.476 0.454 0.602 0.544 0.702 0.343
0.20 0.605 0.476 0.455 0.599 0.656 0.702 0.343
0.10 0.602 0.477 0.453 0.605 0.662 0.702 0.343

Default — 0.676 0.586 0.467 0.575 0.701 0.703 0.346

shows, default gives the best F1 on all datasets, Shuffled-E lowers F1 by about 0.13 on average, and
Single-E is closer but still worse by 0.025 on average. These results show that correct environment
assignments matter and that collapsing or misassigning E degrades performance.

4.4 ROBUSTNESS UNDER DATA PERTURBATIONS

We evaluated the robustness of our model against two common data corruptions: additive Gaussian
noise (N(0, σ), σ ∈ 0.1, 0.05, 0.01) and random missing values (r ∈ 40%, 20%, 10%, imputed by
mean). As Table 5 shows, mild noise often improved performance (e.g., ECG 0.586→0.594/0.600,
WADI 0.701→0.723/0.715), with only minor drops at σ = 0.1 and scores still above baselines.
Similarly, SMD benefited from masking (0.575→0.605/0.599/0.602), while other datasets showed
<10-point losses yet remained superior to competitors. These results highlight the framework’s
robustness under realistic perturbations.

5 CONCLUSION AND FUTURE WORK

In conclusion, we propose a causal structural jump-diffusion framework that unites continuous la-
tent modeling with discrete environments, yielding state-of-the-art anomaly detection and enhanced
interpretability. By pairing counterfactual and factual trajectories, our model, CSJD-AD quantifies
regime, specific impacts and adapts to structural shifts via a jump-augmented SDE. This causal sep-
aration explains why an alarm is raised and delivers state-of-the-art detection performance across
seven benchmarks. The approach thus offers a new, interpretable direction for TSAD by explicitly
linking latent dynamics to regime-specific causal structure.

In future work, we aim to boost adaptability in regime-agnostic settings by introducing a nonpara-
metric prior, allowing the posterior to automatically shrink unused regimes and infer the number of
environments K directly from data, thereby improving robustness when true regimes are unknown.
We will also pursue cross-environment generalization by using leave-one-environment-out training
with invariant or distributionally robust objectives and by enabling light test-time adaptation of E.
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A APPENDIX

A.1 ANONYMOUS SOURCE CODE

Code is available at https://anonymous.4open.science/r/CSJD-AD.

A.2 TRAINING RESOURCES

All experiments were carried out on a single desktop workstation with the following hardware and
software configuration:

• Operating System: Ubuntu 24.04 LTS

• CPU: AMD Ryzen 9 9950X3D

• System Memory: 64 GB DDR5

• GPU: NVIDIA GeForce RTX 4090 (24 GB VRAM)

• Libaries: Python 3.8 + Pytorch 2.4.1 + CUDA 12.1

The training time and resources usage is listed in Table 6.

A.3 TRAINING SETTINGS

To ensure consistency across experiments and to minimize the impact of individual hyper-parameter
choices, we fixed the sliding-window length to 200 for all datasets—even though their respective
optimal windows differ (details in Appendix section 5). Each model was trained for up to 200
epochs with early stopping, allowing adaptive convergence on each dataset. Anomaly thresholds
were selected via a grid search that maximised the F1 score, thereby reducing sensitivity to threshold
choice.

Table 7 lists the hyper-parameters shared by every experiment; the remaining dataset-specific set-
tings are given in Table 8.

A.4 DATASETS SOURCES

ASD https://github.com/zhhlee/InterFusion/tree/main/data
ECG https://www.cs.ucr.edu/˜eamonn/discords/ECG_data.zip
MSL https://www.kaggle.com/datasets/patrickfleith/

nasa-anomaly-detection-dataset-smap-msl
SMD https://github.com/NetManAIOps/OmniAnomaly/tree/master/
WADI https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_

info/
Yahoo https://webscope.sandbox.yahoo.com/catalog.php?datatype=

s&did=70
KPI https://github.com/NetManAIOps/KPI-Anomaly-Detection

B JUMP DIFFUSION PROOF

B.1 PROOF SKETCH

Under the assumption that the environment process is piecewise constant and predictable, and that
the drift, diffusion and the combined jump map satisfy global Lipschitz and linear-growth bounds
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Table 6: Comparison of training time and VRAM usage across datasets and models.

Metrics Model ASD ECG MSL SMD WADI Yahoo KPI

Training time (min)

Sensitive-HUE 16 23 33 72 52 77 91
IGCL 29 16 32 77 90 205 400

RedLamp 2 3 1 13 66 5 22
Ours 15 10 28 59 49 14 99

VRAM (GB)

Sensitive-HUE 0.840 0.952 0.55 0.621 10.533 0.441 0.979
IGCL 1.233 0.786 1.023 0.823 8.902 0.640 0.823

RedLamp 0.725 0.380 0.378 0.345 5.212 0.338 0.583
Ours 0.627 0.533 0.957 0.719 7.217 0.552 0.720

Table 7: Common hyper-parameter settings used in all experiments.

Hyperparameter Value

λcausal 1
λKL 0.01

Sliding-window size 200
Training epochs 200

Higham & Kloeden (2005), classical SDE theory guarantees a unique strong solution on each macro-
interval. At each jump time, the Lipschitz jump map deterministically updates the state, preserv-
ing uniqueness across intervals. For simulation, we partition each interval of length ∆t into Eu-
ler–Maruyama Kloeden et al. (1995) micro-steps for the diffusion and apply the jump exactly; the
only discretization error is O(∆t) in mean square, yielding strong convergence of order 1/2.

B.2 EXISTENCE AND UNIQUENESS

We assume the environment process Et is piecewise-constant and predictable ( Et = Etk for t ∈
[tk, tk+1) and Etk is Ft−k -measurable). Impose global Lipschitz and linear-growth conditions on the
diffusion coefficients and the jump map G(u, e) = u+pE(u, e)JE(u, e): there exist L,K > 0 such
that for all u, v ∈ Rd and each environment e,

∥µe(u)− µe(v)∥+ ∥σe(u)− σe(v)∥ ≤ L∥u− v∥,
∥µe(u)∥2 + ∥σe(u)∥2 ≤ K(1 + ∥u∥2),
∥G(u, e)−G(v, e)∥ ≤ L∥u− v∥,

∥G(u, e)∥ ≤ K(1 + ∥u∥).

(1)

Spectral normalisation and weight clipping enforce these bounds in practice. Induction over k
then yields a unique strong solution: the diffusion part admits a unique solution on (tk, tk+1),
and the Lipschitz jump map deterministically propagates the state to Utk+1

, preserving uniqueness.
Environment-driven variations are captured by µE and the soft-jump term pEJE ; any residual devi-
ation therefore signals a causal violation, aligning with our anomaly-detection objective.

B.3 NUMERICAL APPROXIMATION AND TRAINING

Each macro interval ∆t is subdivided into N micro–steps of size δt = ∆t/N . For m = 0, . . . , N−1
we perform the Euler–Maruyama update

Uk,m+1 = Uk,m + µE(Uk,m) δt+ σE(Uk,m)
√
δt ϵk,m,

ϵk,m ∼ N (0, I), (2)
starting with Uk,0 = Utk . After the N micro–steps we apply the instantaneous soft jump

Utk+1
= Uk,N + pE(Uk,N , E) JE(Uk,N , E). (3)
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Table 8: Dataset-specific hyper-parameter settings. Input/Latent/Hidden Dim: dimensionalities
of input, latent state, and hidden layers; K: number of pre-specified environments; γ: the scalar
controlling the strength of jump influence; λcausal: weight on causal loss; Patience: early-stopping
patience; LR: learning rate; WD: weight decay; Step: step size; γsched: decay factor of the learning-
rate scheduler.

Dataset Input Latent Hidden K γ λcausal Batch Patience LR WD Step γsched
Dim Dim Dim Size (epochs) (epochs)

ASD 19 32 64 4 0.8 1 32 15 5e−4 1e−5 30 0.1
ECG 2 32 64 2 0.7 1 16 10 1e−3 1e−4 50 0.3
MSL 55 128 256 4 0.7 1.2 32 10 3e−4 1.5e−4 50 0.4
SMD 38 64 128 4 0.8 1.2 32 10 5e−4 1e−4 40 0.5
WADI 127 256 512 4 0.8 1 256 8 1e−3 1e−4 15 0.5
Yahoo 1 32 64 4 0.3 1 16 8 5e−4 1e−4 15 0.5
KPI 1 32 64 4 0.8 1 64 15 5e−4 1e−5 30 0.1

Table 9: F1 scores for different sliding-window sizes (higher is better). Best scores are in bold

Window ASD ECG MSL SMD WADI Yahoo KPI

50 0.556 0.391 0.358 0.565 0.660 0.707 0.243
100 0.601 0.454 0.412 0.561 0.667 0.773 0.279
150 0.632 0.549 0.433 0.564 0.712 0.724 0.321
200 0.676 0.586 0.467 0.575 0.701 0.703 0.346
250 0.704 0.552 0.495 0.589 0.680 0.679 0.381

Because the jump is handled exactly, the only source of discretisation error lies in the diffusion part.
Under the Lipschitz and growth conditions above:

max
k≤K

E
[
∥U(tk+1)− Utk+1

∥2
]
≤ C T ∆t, (4)

where T = tK and C depends on L,K but not on k. Thus the scheme converges in mean square
with order 1/2 and provides stable gradients for end-to-end optimisation.

Thus, our piecewise diffusion with soft jump formulation inherits the expressive power of classical
jump models, while, thanks to Lipschitz constraints and exact jump handling, retaining both differ-
entiability and solid theoretical guarantees (existence, uniqueness, and numerical convergence).

C WINDOW-SIZE SENSITIVITY ANALYSIS

Table 9 presents the complete table of CSJD-AD performance across all datasets under varying win-
dow sizes (from 50 to 250). We observe that ASD, MSL, SMD, and KPI benefit from longer window
sizes (250), while Yahoo, WADI, and ECG achieve better performance with shorter windows (100,
150 or 200). Based on these trends, we select a window size of 200 as a balanced configuration to
minimize sensitivity to this hyperparameter across datasets.

D EXTENDED BENCHMARK RESULTS

The Table 10 is the extended main results including precision and recall scores. The Table 11 and
Table 13 is the extended ablation experiment and robustness test results with AUCPR additionally
included.
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Table 10: Time-series anomaly-detection performance on seven public complete benchmarks with
precision, recall, F1, and AUCPPR(higher is better). Best scores are in bold; second–best are
underlined.

Method Metric Multivariate Benchmarks Univariate Benchmarks
ASD ECG MSL SMD WADI Yahoo KPI

LSTM-VAE

Precision 0.245 0.206 0.272 0.268 0.877 0.255 0.135
Recall 0.521 0.411 0.808 0.580 0.144 0.450 0.271

F1 0.327 0.274 0.407 0.367 0.248 0.326 0.182
AUCPR 0.245±.180 0.206±.150 0.285±.249 0.395±.257 0.139 0.255±.152 0.135±.120

OmniAnomaly

Precision 0.167 0.147 0.161 0.306 0.994 0.219 0.133
Recall 0.414 0.440 0.846 0.912 0.129 0.762 0.411

F1 0.238 0.216 0.271 0.459 0.229 0.340 0.201
AUCPR 0.175±.132 0.154±.152 0.149±.182 0.365±.202 0.120 0.245±.218 0.140±.010

AnomalyTran

Precision 0.298 0.325 0.218 0.206 0.057 0.260 0.212
Recall 0.744 0.812 0.823 0.582 0.434 0.651 0.525

F1 0.425 0.464 0.344 0.304 0.102 0.372 0.303
AUCPR 0.281±.201 0.306±.221 0.236±.237 0.273±.232 0.040 0.261±.182 0.204±.139

TranAD

Precision 0.233 0.346 0.290 0.302 0.887 0.392 0.223
Recall 0.446 0.691 0.759 0.534 0.155 0.630 0.401

F1 0.305 0.461 0.420 0.386 0.263 0.484 0.287
AUCPR 0.238±.178 0.368±.251 0.278±.239 0.412±.260 0.139 0.691±.324 0.285±.206

D3R

Precision 0.150 0.188 0.110 0.237 0.063 0.126 0.094
Recall 0.751 0.751 0.930 0.526 0.831 0.501 0.375

F1 0.253 0.301 0.197 0.326 0.117 0.201 0.152
AUCPR 0.150±.110 0.180±.131 0.138±.101 0.228±.167 0.070 0.120±.080 0.090±.061

PUAD

Precision 0.263 0.285 0.258 0.269 0.955 0.225 0.211
Recall 0.525 0.570 0.750 0.562 0.150 0.450 0.424

F1 0.351 0.382 0.384 0.364 0.259 0.301 0.284
AUCPR 0.280±.203 0.304±.221 0.307±.102 0.291±.210 0.155 0.240±.172 0.224±.152

NPSR

Precision 0.267 0.315 0.240 0.265 0.784 0.413 0.241
Recall 0.525 0.788 0.839 0.623 0.500 0.825 0.483

F1 0.350 0.451 0.373 0.372 0.613 0.550 0.321
AUCPR 0.281±.200 0.405±.281 0.336±.241 0.335±.245 0.552 0.495±.344 0.288±.160

Dual-TF

Precision 0.620 0.480 0.116 0.263 0.504 0.665 0.303
Recall 0.710 0.610 0.140 0.316 0.605 0.797 0.363

F1 0.661 0.538 0.127 0.287 0.551 0.725 0.330
AUCPR 0.628±.212 0.511±.182 0.124±.126 0.215±.074 0.523 0.689±.234 0.314±.107

Sensitive-HUE

Precision 0.286 0.215 0.330 0.295 0.865 0.167 0.099
Recall 0.505 0.550 0.712 0.608 0.587 0.870 0.602

F1 0.366 0.309 0.451 0.397 0.699 0.281 0.170
AUCPR 0.340±.188 0.410±.245 0.432±.121 0.462±.283 0.641 0.489±.429 0.227±.253

IGCL

Precision 0.228 0.366 0.219 0.173 0.447 0.408 0.340
Recall 0.011 0.054 0.228 0.259 0.007 0.133 0.150

F1 0.022 0.094 0.223 0.208 0.014 0.201 0.208
AUCPR 0.079±.066 0.183±.141 0.179±.102 0.126±.132 0.218 0.300±.277 0.206±.198

RedLamp

Precision 0.148 0.110 0.254 0.068 0.756 0.205 0.042
Recall 0.336 0.334 0.321 0.328 0.532 0.548 0.087

F1 0.205 0.165 0.284 0.113 0.624 0.299 0.057
AUCPR 0.154±.103 0.200±.196 0.199±.290 0.128±.140 0.564 0.653±.409 0.089±.129

Ours

Precision 0.686 0.568 0.366 0.538 0.786 0.960 0.269
Recall 0.666 0.604 0.646 0.617 0.633 0.554 0.486

F1 0.676 0.586 0.467 0.575 0.701 0.703 0.346
AUCPR 0.682±.193 0.627±.161 0.464±.296 0.637±.183 0.653 0.937±.200 0.342±.242

E USE OF LLMS

We used ChatGPT to tidy and standardize LaTeX for mathematical formulas, harmonize nota-
tion, perform limited synonym substitutions to keep terminology consistent, and run light grammar
checks on select sentences. We did not use LLMs to design the method, analyze data, select or cu-
rate results, write the experiments section, or generate synthetic data. We did not provide datasets,
labels, or implementation code to the model. All technical content and claims were written and
verified by the authors, and every LLM suggestion was reviewed and edited. The paper and results
remain fully reproducible from our released code and data.
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Table 11: Ablation study of the proposed model. Each column reports F1 scores (higher is better).
Bold numbers denote the best result for that dataset.

Metrics Variant ASD ECG MSL SMD WADI Yahoo KPI

F1

w/o UF 0.562 0.573 0.463 0.563 0.682 0.662 0.194
w/o pE 0.675 0.604 0.445 0.568 0.696 0.698 0.310
w/o E 0.571 0.552 0.455 0.575 0.678 0.618 0.118

w/o Lcausal 0.682 0.566 0.464 0.563 0.685 0.703 0.250
w/o LKL 0.680 0.578 0.465 0.571 0.681 0.655 0.188

Default 0.676 0.586 0.467 0.575 0.701 0.703 0.346

AUCPR

w/o UF 0.559 0.615 0.461 0.621 0.633 0.881 0.210
w/o pE 0.689 0.651 0.449 0.631 0.668 0.934 0.309
w/o E 0.569 0.596 0.454 0.636 0.629 0.821 0.180

w/o Lcausal 0.688 0.612 0.461 0.621 0.636 0.937 0.182
w/o LKL 0.686 0.620 0.462 0.632 0.632 0.872 0.247

Default 0.682 0.627 0.464 0.637 0.653 0.937 0.342

Table 12: Effect of modifying learned environment settings on F1 and AUCPR performance (higher
is better). Best scores for each dataset within a block are shown in bold. Default corresponds to
training with correctly learned environment variables.

Metrics Strategy ASD ECG MSL SMD WADI Yahoo KPI

F1
Single E 0.654 0.585 0.463 0.575 0.693 0.703 0.306

Shuffled E 0.539 0.470 0.404 0.396 0.685 0.501 0.143

Default 0.676 0.586 0.467 0.575 0.701 0.703 0.346

AUCPR
Single E 0.572 0.626 0.450 0.641 0.647 0.936 0.341

Shuffled E 0.670 0.503 0.409 0.438 0.642 0.537 0.139

Default 0.682 0.627 0.464 0.637 0.653 0.937 0.342

Table 13: Effect of noise and missing-value settings on F1 and AUCPR performance (higher is
better). Best scores for each dataset within a block are shown in bold. Default corresponds to
training with no added noise or missing values.

Metrics Strategy Level ASD ECG MSL SMD WADI Yahoo KPI

F1

0.10 0.652 0.584 0.451 0.569 0.697 0.669 0.218
Noise level 0.05 0.642 0.594 0.458 0.574 0.723 0.694 0.277

0.01 0.703 0.600 0.457 0.575 0.715 0.707 0.353
0.40 0.631 0.476 0.454 0.602 0.544 0.702 0.343

Missing ratio 0.20 0.605 0.476 0.455 0.599 0.656 0.702 0.343
0.10 0.602 0.477 0.453 0.605 0.662 0.702 0.343

Default — 0.676 0.586 0.467 0.575 0.701 0.703 0.346

AUCPR

0.10 0.678 0.625 0.451 0.629 0.649 0.859 0.260
Noise level 0.05 0.677 0.634 0.456 0.636 0.676 0.911 0.295

0.01 0.754 0.640 0.456 0.637 0.668 0.932 0.369
0.40 0.664 0.528 0.453 0.673 0.489 0.935 0.357

Missing ratio 0.20 0.637 0.528 0.454 0.669 0.606 0.935 0.357
0.10 0.632 0.528 0.452 0.677 0.612 0.935 0.357

Default — 0.682 0.627 0.464 0.637 0.653 0.937 0.342
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