Confidence-Based Handover for Causal Bayesian Optimization
with Adaptive Expert Trust

Abstract

Causal Bayesian Optimization (CBO) has
emerged as a powerful paradigm for decision-
making under uncertainty, effectively lever-
aging causal structures to guide interven-
tions. However, existing CBO methods do
not adequately integrate domain-specific ex-
pertise, potentially leading to inefficient ex-
ploration and suboptimal outcomes in real-
world applications involving complex hu-
man decision-making and economic consid-
erations. To bridge this gap, we propose
Expert-guided Causal Bayesian Optimization
(ECBO), a framework that integrates hu-
man expert knowledge into the CBO process.
We introduce an expert weighting mecha-
nism that adaptively modulates the Expected
Improvement (EI) acquisition function, re-
flecting expert endorsements or exclusions of
candidate solutions. By embedding these
expert-derived preferences, our model proac-
tively balances exploration and exploitation.
Additionally, we implement a robust harm-
free mechanism to guard against potentially
detrimental expert interventions, alongside
an adaptive trust parameter that dynami-
cally adjusts expert influence based on ob-
served discrepancies. Our experimental re-
sults underscore the practical value of ef-
fectively incorporating expert knowledge in
complex causal environments.

1 Introduction

Bayesian Optimization (BO) is widely used for opti-
mizing expensive black-box functions. The concept
originated from the works of [26, 27, 28], but it gained
broader attention following its popularization by [1].
In traditional BO, the surrogate model heavily relies
on data-driven covariance structures, defined via its
kernel, to assess variable relevance and interactions.
This approach, however, does not account for external
prior knowledge concerning the roles or semantics of

variables, effectively ignoring causal structures. Ad-
ditionally, standard BO intervenes on all variables si-
multaneously, disrupting the natural dependencies of
the system and potentially leading to suboptimal or
infeasible interventions.

To address these issues, [2] introduced Causal Bayesian
Optimization (CBO), which integrates causal knowl-
edge, often represented as a Structural Causal Model
(SCM) [3], into the BO framework. In this setup, “do-
interventions” are applied to select variables, propa-
gating through the causal graph, while non-intervened
variables follow observational distributions. By em-
bedding the graph structure into the Gaussian Process
prior and constraining the acquisition to valid inter-
vention subspaces, CBO reduces the search space, en-
hancing global decision-making in causal contexts, and
avoiding suboptimal solutions that might arise from
standard BO when causal propagation is neglected.
Recently, various extensions have emerged. Notable
contributions include [13; 4, 19, 12, 30, 31, 29, 32].
A summary of these advancements is provided in the
Appendix 2.

Despite these advances, existing CBO frameworks of-
ten underuse a critical resource: human domain ex-
pertise [7, 8, 9]. Practitioners in chemical engineering,
clinical medicine, and robotics [24, 25| possess rich
mental models that encode physical constraints and
heuristic rules (regulatory caps, graduated dosing, sta-
bility bounds). Why expert input? It supplies pri-
ors over where to look and what to avoid—information
that the SCM does not encode, such as feasibility, risk,
and utility trade-offs. How does it help CBO?
It reweights candidates, improving early sample effi-
ciency and reducing avoidable regret and steering the
optimizer away from well-known dead ends and to-
ward promising regimes faster. However, if incorpo-
rated naively, imprecise or inconsistent advice can mis-
lead the surrogate or violate causal assumptions. The
open challenge, therefore, is to integrate expert guid-
ance effectively without compromising CBO’s theoret-
ical guarantees.

Recent human-AT collaborative works [6, 7, 8, 9, 23]
have demonstrated that embedding human feedback
into a BO framework can accelerate search. However,



Confidence-Based Handover for Causal Bayesian Optimization

some fundamental limitations remain. First, expert in-
put is often reduced to binary or global scores, which
cannot express variable- and region-specific prefer-
ences needed to balance, e.g., catalyst load, solvent
volatility, and safety limits. Second, human feedback is
noisy and nonstationary. Treating it as a single fixed-
weight reward miscalibrates the surrogate and triggers
policy oscillations and long-tail regret. In addition,
generic feedback may propose causally infeasible ac-
tions and corrupt learning, excluding valid interven-
tions within the context of Causal Bayesian Optimiza-
tion (CBO), thereby violating identifiability assump-
tions and potentially leading to biased or slower model
updates. These limitations underscore the need for
a framework that supports fine-grained expert prefer-
ences to guide intervention strategies.

To address these fundamental limitations, we propose
the ECBO framework, which systematically integrates
dimension-specific, real-valued expert feedback into
the causal optimization process. Our approach as-
signs nuanced expert preference weights to each deci-
sion variable individually, capturing a rich spectrum of
domain knowledge. Practitioners can articulate pref-
erences such as gradually promoting a particular vari-
able, moderately suppressing another, or strictly ex-
cluding unsafe regions, effectively translating expert
insights into explicit optimization constraints. ECBO
searches over executable intervention subspaces and
then lifts the chosen setting to a full decision, so every
proposal is implementable.

Building on this expert-guided foundation, ECBO em-
ploys an expert-enhanced acquisition that blends clas-
sic Expected Improvement (EI) with expert prefer-
ence weights via an adaptive trust coeflicient. This
trust coefficient is updated based on a decision-
aligned improvement signal; it rises when expert guid-
ance helps and falls when it hurts. A conservative
safety gate filters low-confidence expert regions, and
a confidence-based handover automatically disables
the expert once its surrogate becomes reliable. The
scheme is soft-weighted, circumventing rigid binary re-
jection by gently steering exploration, so that informa-
tive candidates are preserved and late-stage oversteer
is avoided. In addition, we introduce the average GAP
metric to quantitatively evaluate the trajectory-level
efficiency of our approach compared to existing base-
lines. In short, the main contributions of this paper
are summarized as follows:

e We propose an adaptive, expert-weighted EI ac-
quisition function that dynamically blends tradi-
tional Expected Improvement with expert prefer-
ence weights.

e We introduce a trust calibration mechanism that

updates the expert trust coefficient online, grow-
ing it when expert advice improves the objective
and shrinking it when advice proves harmful.

e We introduce PA-GAP, a path-aware efficiency
metric that multiplies normalized improvement by
a time weight and averages over rounds.

e We prove no-harm relative to a coupled EI base-
line and same-order convergence/regret under
standard GP assumptions, with guarantees that
match the algorithm actually used.

2 Background and Problem Setting

In this section, we first formalize the interven-
tional optimization problem over a structural causal
model, then show how to prune the combinatorial
intervention-set space to a tractable family, and finally
introduce the causal GP surrogate that underpins all
downstream acquisition strategies.

2.1 Problem Formulation and
Intervention-Set Construction

We consider a known structural causal model (SCM)
3] M = (G, U, V, F, P(U)), where G is a directed
acyclic graph (DAG), U is the set of exogenous (noise)
variables, P(U) its exogenous distribution, V is the
set of endogenous variables, and F is the collection
of structural equations V; = f;(pa;,U;). Within the
set of endogenous variables V, we denote a subset of
controllable variables X = (Xi,...,X4) C V, and a
target outcome variable Y € V.

An (possibly partial) intervention on a subset of vari-
ables S C X involves enforcing the assignment S = xg,
where x; is a value from the corresponding domain X,
which is the Cartesian product of the domains of X; in
S. This action results in a post-interventional distribu-
tion for the outcome variable, P(Y | do(S = x5)). The
objective is to identify an optimal intervention (S*, x})
that maximizes the expected value of the outcome Y,
subject to a finite budget T". This optimization prob-
lem is formulated as:

(8%,x5) = arg . _max .- py (S, Xs),
where py (S,xs) :=E[Y | do(S = x4)] (1)

In practice, the intervention space is exponential
(21X1), so we limit our search to a more manage-
able, predefined Intervention Search Space, denoted by
Sexp € P(X).

Define a subset S C X as a Potentially Optimal Set
(POS) if it satisfies both:



Redundancy-Free: There is no strict subset S’ C S
and assignment s’ € Xs: such that

S,s) = S, s). 2
(59 = g (555, @)
That is, no variable in S can be removed without po-
tentially reducing the best achievable outcome.
Potential Optimality: There exists a realization of
the structural functions and exogenous noise such that

2161%); wy (S, 8) > wnel%f)év py (W, w)
for all W € S\ {S}. (3)

where St denotes the family of all redundancy-free
sets. We consider the finite family Seyp, of all potential
optimal sets as the Intervention Search Space.

2.2 Surrogate Modeling under Causal
Structure

We model the interventional response surface using a
Gaussian Process (GP). For each intervention set S €
Sexp; We maintain an independent GP Gg mapping
Xg € Xg to scalar outcome Y.

Gaussian Processes in brief. A Gaussian Process
(GP) prior over a scalar function f(-) is specified by
mean m(-) and kernel k(-,-); given inputs X and out-
puts y, the posterior mean and variance at x follow
the standard closed forms. For each intervention set
S € Sexp, we model the interventional response

fs(xs) =E[Y | do(S = xs)], (4)
with an independent GP Gg defined on Xjs:
fs(-) ~ GP(ms(-), ks(-,-)). (5)

. X s
Let the dataset at round t be Dy = {(xg),y(l))}?:‘l.
Let Xs = [x{'], ys = [y?], and Ky = ks(Xs, Xs),
then the posterior of Gg at xg € Xg is

1y (xs) = mg(xs)

+ ks(xs, Xs)(Ks + 021)71(}’5 - ms(XS()))
6
075 (xs) = ks(xs,%s)
— k‘s(Xs, Xs)(KS + 02])71]65(X5,X3)
(7)

Gradients. Assume kg and mg are differentiable.

Define
as = (Kg+0°I)" (ys — ms(Xs)), (8)

Cs = (Kg+o%I)7 1, (9)

Then, we obtain

vXSH’ts(XS) = VXSmS(XS) + VXskS(X57XS) ag,
(10)
Vixs0p (x5) = Vs ks (xs, Xs)
—2Viysks(xs,Xs) Cs ks(Xs,xs)
(1)
For stationary kernels kg(xg,xg) that are constant,
the first term in (Eq.11) is zero. These derivatives are
used in Section 3 to optimize the acquisition.

3 Methodology

3.1 Expert Preference Representation

We incorporate human or domain expertise through
a lightweight query protocol that returns structured
preference signals for any candidate intervention X =
x. Each query yields one of four outcomes:(i) Ex-
clude, down-weight the coordinate and any candidate
that contains it; (ii) Promote, prefer increasing the
coordinate; (iii) Suppress, prefer decreasing the co-
ordinate; (iv) Uncertain, no directional guidance.

Preference Modeling. We convert these heteroge-
neous signals into a smooth preference weight w(x) €
[0, 00) that modulates the acquisition function (Section
3.2). Let K denote the set of expert-specified rules.
For each rule k € K, the expert provides: (i)a tagging
function 7k, mapping intervention feature to discrete
tags (ii) and a tag-to-weight map wy, assigning a mul-
tiplicative scalar to each tag.

The final weight w(x) is computed by aggregating the
per-rule contributions multiplicative:

wix) = [ we (ralay)), (12)
o

a concrete example is presented in the Appendix 3.

Uncertainty Handling Rule. A critical design is
how to react when all feedback within a given inter-
vention subset S is marked “uncertainty” during an
iteration. To prevent spurious shifts driven by noise-
dominated gradients, we skip the expert update in
that subset: neither the acceptance model py (defined
in Section 3.3) nor the trust coefficient 7 (defined in
Section 3.2) is revised. This rule preserves stability,
especially on datasets where uncertain signals are fre-
quent, and empirically prevents degradation observed
when forcing updates with empty supervision.

3.2 Expert-Weighted Causal Expected
Improvement

We build upon the standard EI criterion to incorpo-
rate expert guidance. Let 3+ = max{y(¥} be the best
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observed outcome so far and denote the GP posterior
mean and standard deviation at x by u(x) and o(x).
Let f(x) = E[Y | do(X = x)]. The classic EI for

maximization is defined as

El(x) = E[max{(), f(x)—y"'}} = a(x)(z,@(z)—kqb(z)),

_ gt
where z = m, (13)
o(x)
where ® and ¢ are the standard normal CDF and PDF,

respectively.

To inject expert preference and intervention expense,
we modulate EI by the trust-weighted deviation of the
expert weight w(x) from unity. We define the Expert-
weighted Causal EI (ECEI) as

[14m (w(x) — 1)] EI(x)

ECEI(x) = e

; (14)

where n; € [0, 1] is the trust coefficient at iteration t
and co(x) > 0 denotes the cost of executing interven-
tion X = x, capturing resources or time required.

Its gradient, which drives our gradient-based acquisi-
tion optimizer, decomposes naturally into two terms:

[1+m (w(x) —1)] VEI(x)

VECEI(x) = co(x)
. nEI(szV)umx) (15)
R (v;(;i)—z DI & .

The first term of the numerator rescales the standard
EI gradient, while the second injects directional signals
from the expert model. Finally, each intervention sub-
set S € Sexp maintains its own surrogate and expert-
weighted acquisition. During each BO iteration, we
optimize ECElg(xg) separately in parallel and then
compare the best proposals across all Sexp to select
the next evaluation point.

3.3 Trust Modulation and No-harm
Weighting

We introduce a scalar trust coefficient n; € [0, 1] to bal-
ance surrogate-driven search and expert guidance. In-
tuitively, we wish to increase trust when expert advice
yields better candidate points, and decrease it when
advice harms expected improvement.

Rationale for EI Difference To quantify “poten-
tial harm” or benefit of expert guidance, we compare
the classic EI with our ECEI. Define the batch-average
difference

AL = ‘—;Z[ECEL(X)—EL(X) . (16)

x€eSs

For the selected candidate x;, we use the single-point
surrogate AEI; := EI(x) [wi(x¢) — 1]. If AEIL, <0,
expert weighting reduces EI (a sign of harm or mis-
alignment), whereas AEI; > 0 indicates a net improve-
ment from expert input. AEI is the right signal be-
cause it measures the expert’s marginal effect on the
exact quantity we optimize. Holding the posterior and
candidate set fixed, it isolates how expert weighting
changes decisions.

Trust Update We update trust proportionally to
this measured effect:

N1 = clip(m + v AEL, 0,1>, (17)

where v > 0 is a learning rate and clip(n,0,1) =
min{max{n, 0}, 1}. Thus, beneficial advice (AEIL; > 0)
will increase the update term (increasing net trust),
while harmful advice (AEIL; < 0) will reduce trust.

Safe-Check We adopt a calibrated reliability gate
based on the expert-confidence weight w(x):

Safe(x) = l{w(x)za}v (18)

When Safe(x;) = 0 the expert is disabled for this
round and we set ;11 = 0 (fallback to the baseline
EI), high-confidence regions and stabilizes optimiza-
tion.

Handover-check We implement the expert surro-
gate as a simple logistic classifier

pe(accept | x) = U((;S(X)Tﬁ), (19)

trained on the labeled expert queries D; =
{(x®, 7)1 with ) € {0,1}. Let uncertainty(x)
denote the surrogate’s predictive uncertainty (re-
turned by the implementation).

We define a global uncertainty upper bound at round
t as

Ui = max uncertainty(x). (20)

(x,r)ED:
If Uy < genr we stop using the expert signal and set
Mi+1 = 0, otherwise the expert remains active.

Harm-Free Principle Our design aims to be harm-
free with respect to a coupled EI baseline: when expert
guidance helps, it is used; when it hurts, its influence is
disabled. Concretely, we combine (i) a decision-aligned
trust update driven by AEI (Eq.17), (ii) a conserva-
tive gate that disables expert input in low-confidence
regions (Eq.18), and (iii) a confidence-based handover
that turns the expert off once its surrogate becomes
reliable (Eq.20). This is a performance guarantee rel-
ative to EI under bounded weights and costs and a
finite candidate set. Formal proofs appear in Section
3.5.



Algorithm 1 Expert Causal Bayesian Optimization

Input: observational data DY, interventional data
DY, subset family Sexp
Parameter: budget T'
Output: optimal subset S*, assignment x*, estimate
E[Y* | do(S* = x*)]

1: fort=1to T do

2: Cy <+ 0 # candidate set

3 for each S € Sexp do

4: X% ¢ arg max, e xs ECEL (x5)

5 vs + ECEI (x%)

6 Ct (—CtU{(S,Xg,Us)}

7 end for

8 (St,X¢t,vp) ¢ argmax(g x,vyec, v

9 Yt < ]E[Y | dO(St = Xt)]
10:  if not all coordinates in S; are uncertain then

11: AEIt — EIt(Xt) [wt(xt) — 1]

12: Ner1 clip(nt +vAEL, 0, 1) (trust update)
13: if wy(x¢) < o then

14: Ntr1 < 0

15: end if (safe-check)
16: if U; < gty then

17: Nt+1 0

18: end if (handover)
19: label <— query_human(x;)

20: update expert surrogate with (x;,label)

21:  end if

22:  update only Gg, with (x¢,yt)

23: end for

24: return S*, x*, IE[Y* | do(S* = x*)]

3.4 Iterative Loop and Post-update Policy

Our algorithm proceeds in rounds t = 1,...,T. At
each iteration, we select a candidate subset Sy € Sexp
and optimize the ECEI to propose an intervention x;.
We then evaluate y; = E[Y | do(X = x;)] and solicit
expert feedback on x;. If in the previous Expert Eclic-
itation, the expert expresses fully neutral preferences
(i.e., uncertainty across all dimensions in the current
subset), we skip the preference model update. Oth-
erwise, we update the preference model accordingly:
we adjust the trust coefficient 7; based on the average
deviation in expert weights, perform safe-check and
handover-check. If both check passed, we use inter-
vention x; and the queried label to update the expert
logistic surrogate classifier. Finally, we update the GP
posterior using the new observation (x:,y:). This it-
erative loop ensures that surrogate modeling, expert
guidance, and trust modulation work in concert to en-
able efficient and causally grounded exploration.

3.5 Theoretical Guarantees

Assumptions
malized to [0, 1].

(A1) The objective is linearly nor-

(A2) Costs and expert weights are bounded:
0< Cmin S CO(X) S Cmax < 00,
0 < Wiin < W(X) < Wiax < 00. (21)

(A3) Safety- and handover-check do not increase 7,
(we do not require 7; to be monotone).

(A4) At each round, the implementation optimizes the
acquisition over a finite candidate pool X4 C X’; the
solver returns a p;-approximate maximizer, i.e.,

ECEL(x{°) > p+ max ECEIL(x),p: € (0,1]. (22)

xeXgand

Here x§¢ € X274 is the ECBO proposal at round ¢.

Coupled baseline Let B™ be the baseline that runs
on the same history and uses EI as the acquisition
(with n = 0):

xP®¢ ¢ arg max EI(x). (23)

xeXtcaud

Here xP#s¢ € xfand ig the coupled EI baseline choice
on the same history and pool, obtained by maximizing
ElL; (equivalently, setting n =0 in Eq. (14)). It serves
as the comparator for no-harm analysis.

Lemma 1 (Proportional bounds between ECEI
and EI). For any x and ¢, from Eq. (14),

Oémin’tEIt(X) S ECEIt(X) S amax,t EIt(X), (24)
where

1+ Ui (wmin - 1) 1+ Tt (wmax -

Qmin,t = c ) Omax,t — c
max min

(25)

Theorem 1 (Per-round competitiveness vs.
baseline). Define

L Qmin,t o Cmin 1+ Tt (wmin - 1)
Kt ‘= pt ——— = Pt :
Omax,t Cmax 1+ Tt (wmax - 1)

Then for every t,

EL(x{°) > k- max EL(x) = Iit-EIt(X?ase). (27)

cand
XEX]

Corollary 1 (Uniform constant). If p; > pmin > 0,
then

Cmin Wmin
Kt Z Kmin ‘= Pmin —— ———— > 0. (28)
max Wmax
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Theorem 2 (Conditional coupling; harm-free).
Suppose at some round 7 we trigger 7, = 0 (e.g., via
safety /handover zeroing or Eq. (17) with clipping). If,
in addition, the cost co is fixed (independent of x)
thereafter, then for all t > 7,x¢¢ = xPa%. Conse-
quently, for any horizon T" > 7, the subsequent tra-
jectories and losses coincide.

Theorem 3 (Inherited convergence and regret).
Assume the coupled baseline B (with the given kernel
and noise) satisfies best-so-far simple regret Sg(T") —
0 and/or cumulative regret Rp(T') = o(T). Then
ECEI also satisfies

SECBO(T) —0 and/or RECBO(T) = O(T) (29)

Remarks. (R1) Theorem 1 provides per-round hard
lower bounds that depend explicitly on solver accuracy
and the boundedness of co and w. Any wpyi, > 0 and
Pmin > 0 yield a global constant &min.

(R2) Theorem 2 is a sufficient-condition coupling and
does not require 7; to be monotone.

(R3) Theorem 3 gives conditional inheritance (match-
ing the known properties of the EI baseline); we refrain
from information-gain-style high-probability claims to
avoid a mismatch with the implementation?.

4 Experiment

4.1 Datasets

We evaluate our method across five scenarios: Toy-
Graph, CompleteGraph, and PSA (synthetic datasets
generated from predefined SCMs [2, 17]) and Diabetes
and PSA-CDC (real datasets with SCMs inferred us-
ing LINGAM [14]). The details of each dataset are
provided in Appendix 7.

4.2 Baselines

We compare ECBO with several baselines: standard
BO [1], CBO [2], COBOL (expert-labeling enhanced
BO) [6], constrained CBO (cCBO) [19], dynamic
CBO (DCBO) [13] for non-stationary SCM, model-
based CBO (MCBO) [4], and high-dimensional CBO
(HCBO) [5]. Full details of these baselines are pro-
vided in Appendix 6.

4.3 Performance metric
We evaluated all methods with two numerical met-

rics and visualization metrics: GAP, Path-Aware GAP
(PA-GAP), and best-so-far simple regret.

'Proof of Section 3.5 is included in the Appendix 4

GAP was introduced in DCBO [13] to quantify opti-
mization efficiency, which was defined as:

Improvement Term Efficiency Term

* *
y(x;) — y(Xinit) T—t
Y* — y(Xini T
GAP = (12T_1 . (30)
T
——

Normalization

where y(x) = E[Y | do(X = x)] denotes the objective
function, y* is the global optimum, and x;y;; and x; are
the initial and best-evaluated points at trial ¢, respec-
tively. T is the total number of trials, and t* denotes
the trial index at which y(x}) is discovered. It equals
to T if the entire optimization has no improvement?.
It incorporates an improvement term, capturing the
ratio of achieved improvement to the maximum possi-
ble, and an efficiency term, rewarding early discovery
of the optimum.

However, it pays limited attention to the overall op-
timization process, as it only uses the final result in
the calculation, and it tends to over-penalize later tri-
als, even when they achieve better optimal values. To
address these issues, we introduce PA-GAP as:

T

PA-GAP = l Z y(xt) - y(xinit) . T — (t _ 1)
r= y* — y(Xinit) \qj;_/
B —_—

Improvement Term Efficiency Term

(31)

By construction, each trial’s score lies in the range [0,
1], where 0 indicates no improvement over the initial-
ization and 1 suggests that the optimum is found in
the first trial. Larger values correspond to faster and
more effective search. Averaging across trials rewards
algorithms that perform well throughout the optimiza-
tion process, rather than only converging early or late
in the process.

The best-so-far simple regret R [35] is defined as:
R=yx) -y, (32)

which describes how close the current optimal value is
to the best theoretical value.

4.4 Main Results

Each experiment is repeated twenty times with dif-
ferent random seeds and independent initialization of

2DCBO originally sets t* = 0 when no improvement

occurs, which restricts GAP to [%, 1] rather than [0, 1].

We correct this by setting ¢t* = T. A detailed example is
provided in Appendix 8.1.



Table 1: Performance across eight models on five datasets. Each value is average + std. across twenty random

initializations. Best values per dataset are in bold.

Metrics ‘ Model ‘ ToyGraph ‘ CompleteGraph ‘ PSA ‘ Diabetes ‘ PSA_CDC
BO 0.224+.139 0.198+.155 0.125+.064 0.102+.055 0.385+.203
CBO 0.424+.246 0.172+.124 0.175+.088 0.155+.072 0.367+.211
COBOL 0.447+.270 0.171+.098 0.126+.072 0.033+£.016 0.000+.000
PA-GAP cCBO 0.235+.135 0.184+.119 0.309+.293 0.024+.017 0.004+.002
DCBO 0.465+.288 0.036+.020 0.000+.000 0.163+.106 0.140+.091
MCBO 0.071+.045 0.162+.103 0.100+.093 0.000+.000 0.100+.082
HCBO 0.285+.162 0.107+.091 0.010+.005 0.146+.072 0.105+.072
ECBO 0.493+.281 0.299+.155 0.335+.147 0.176+.091 0.394+.203
BO 0.346+.204 0.401+.172 0.310+.089 0.148+.082 0.817+.194
CBO 0.810+.198 0.658+.104 0.577+.108 0.296+.109 0.692+.204
COBOL 0.922+.125 0.593+.108 0.623+.031 0.431+£.092 0.000+.000
GAP cCBO 0.730%+.102 0.691+.123 0.842+.132 0.228+.076 0.501+.129
DCBO 0.949+.213 0.482+.032 0.487+.004 0.448+.098 0.507+.066
MCBO 0.547+.142 0.652+.132 0.510+.104 0.000+£.000 0.527+.103
HCBO 0.727+.136 0.559+.106 0.335+.032 0.484+.132 0.543+.032
ECBO 0.988+.124 0.538+.151 0.684+.082 0.305+£.192 0.822+.195

Tial Number

Figure 1: Best-so-far simple regret per trial visualization for eight models on five datasets. Solid lines show the
mean; shaded regions show the standard deviation across twenty random seeds, including randomized initializa-

tions of the observation and intervention data.

observational data D§ and interventional data Df. We
report the mean and standard deviation of GAP and
PA-GAP in Table 1. We fix all algorithmic hyperpa-
rameters (see Appendix 1) to isolate the effect of fine-
tuning. Each dataset uses 250 observational samples
and 100 optimization trials. Budget-limited variants
with 50 and 20 trials are reported in Appendix 9.

From Figure 1, we observe that ECBO continues to
optimize throughout the entire process and is able to
find the best optimal value across all datasets. Espe-
cially in CompleteGraph, ECBO starts with the worst
initial point but is able to continue exploring and opti-
mizing with the aid of the expert preference guidance,
eventually smallest best-so-far simple regret by finding
the closest point to the best theoretical value.

In Table 1, ECBO achieves the best PA-GAP scores,
reflecting both the highest optimization efficiency and
the best optimal values across synthetic and real-world
scenarios. In particular, under realistic conditions,
ECBO outperforms all baselines, including on the chal-
lenging Diabetes dataset, which has the largest num-
ber of nodes among all scenarios. DCBO, MCBO, and
COBOL fail to make progress on PSA, Diabetes, and
PSA_CDC, respectively, resulting in PA-GAP scores
of 0, as they are unable to identify any solution better

Table 2: Performance ECBO across different wrong
SCMs. Values are PA-GAP (mean + std. over 20
random initializations); Best values per dataset are in
bold.

Variants ‘ ToyGraph ‘ PSA ‘ Diabetes ‘ PSA_CDC

Missing Edge
Missing node
Original

0.483£.182 | 0.305£.125 | 0.175£.073 | 0.392+.194
0.456.207 | 0.294.142 | 0.172+.065 | 0.392+.182
|0.493E.281(0.335£.147|0.176+.091|0.394%.203

than the initial best observation. In terms of GAP,
ECBO has no superior performance because the ad-
ditive definition of GAP introduces a ranking bias,
with which a trajectory that is overall superior may
be judged as inferior. Detailed examples are in Ap-
pendix 8.2.

4.5 ECBO Robustness on Inaccurate SCMs

Even though we curated and validated the SCMs in-
ferred by LINGAM for Diabetes and PSA_CDC using
domain knowledge and multiple model-fit tests 3, they
may still not be perfectly accurate. To further evalu-
ate robustness, we also tested model performance un-

3Model-fit tests details in the Appendix 7.3 and 7.4
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ToyGraph Eta PSA Eta

—— Original
Partial Wrong
—— All Wrong

Figure 2: 1 monitoring on ToyGraph and PSA under
three different preference settings.

Table 3: Ablation of fallback, handover, and n—update
mechanisms. Values are PA-GAP (mean + std. over
20 random intialization); Best values per dataset are
in bold

Variant ‘ ToyGraph ‘ PSA ‘ Diabetes
w/o fallback 0.4924.262 0.2544.033 0.146+.019
w/o handover 0.491+4.228 0.2584+.010 0.153+.028
w/o n—update 0.491+.283 0.276+.015 0.178+.102

Original | 0.493%.281 | 0.335+£.147 | 0.176+.091

der perturbed SCMs. In Table 2, the missing edge
setting refers to the intentional removal of up to two
edges from selected nodes, ensuring that the nodes re-
main connected to the target. The missing node set-
ting refers to the removal of a node together with all
of its incident edges. Visualizations of these perturbed
SCMs are provided in Appendix 10.

We observed that model performance degraded more
noticeably on ToyGraph and PSA, where the true
SCMs are given. In contrast, for Diabetes and
PSA_CDC, whose SCMs were inferred via LINGAM,
the effect was much smaller. This implies that perfor-
mance degradation is more sensitive when the ground-
truth SCM is available, but less impactful when the
SCM is already approximate.

Ablation Study Table 3 reveals a clear pattern: on
simpler tasks (like ToyGraph), removing fallback, han-
dover, or trust updates barely moves the needle, but
on more challenging benchmarks (PSA and Diabetes),
each mechanism becomes essential. In particular, dis-
abling the trust-update consistently worsens perfor-
mance under noisy expert feedback, whereas handover
offers additional robustness when uncertainty is high.
Interestingly, in the Case of Diabetes, expert guidance
is generally reliable, so freezing n accelerates conver-
gence and slightly raises PA-GAP; however, disabling
handover still hurts by cutting off useful cues too early.

4.6 n-Monitoring

We investigate how expert preference settings impact
the trust coefficient 7, which measures the degree of re-
liance on expert guidance. Because each intervention
subset has its own expert surrogate, we track n over
time for the subset tied to the final optimal interven-
tion (x;): {Statin} on PSA and (Z) on ToyGraph. We
log 1 at each intervention on that subset; the x-axis in
Fig. 2 is the cumulative intervention cost. We compare
three configurations: (i) Original (ideal ECBO guid-
ance), (ii) Partial-wrong (some preferences flipped),
and (iii) All-wrong (all preferences contradict correct
ECBO guidance). The expert references details for
every dataset are included in Appendix 11.

On ToyGraph, correct guidance holds n at its initial
0.7 until cost 6, then triggers a clean handover (n—0),
whereas Partial Wrong delays this drop until cost 8, re-
flecting occasional mislabels, and All Wrong never falls
below its starting value, indicating no fallback under
fully contradictory feedback. On PSA, the Original
guidance again maintains 1 around 0.71 until cost 8
before handing over; in the wrong cases, 1 never rises
and quickly settles at a low level, confirming that our
safety rule prevents overtrust when expert guidance
is misleading. These plots confirm that our revised
trust-update and safety-fallback rules enable a timely
handover under correct feedback, graceful trust with-
drawal under partial misguidance, and a stable low-
trust floor when expert advice is entirely erroneous.

5 Conclusion

In this work, we have introduced ECBO, a novel
framework that integrates domain expert feedback into
causal Bayesian optimization by augmenting the clas-
sic EI acquisition with an adaptive trust coefficient,
gradient-aligned safety fallback, and an automated
handover stopping criterion. Our method preserves
the rigour of causal intervention through a context-
aware Gaussian process posterior while enabling flexi-
ble, multi-categorical expert preferences and robustly
managing adversarial or uncertain feedback. To fur-
ther enhance scalability in high-uncertainty regimes,
we propose an uncertainty handling rule that skips sur-
rogate and trust-updates on purely uncertain labels,
reducing query and computational overhead without
degrading optimization quality. Extensive experi-
ments on synthetic SCM benchmarks and real-world
tasks demonstrate that ECBO outperforms vanilla EI
in both solution quality and efficiency.
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Confidence-Based Handover for Causal Bayesian Optimization
with Adaptive Expert Trust Supplementary Materials

A Training Settings

All experiments were carried out on a single desktop workstation with the following hardware and software
configuration:

e Operating System: MacOS 15.5
e CPU: Apple M3 Max

e System Memory: 36GB

e Libaries: Python 3.8

The Table 4 includes hyperparameter values of ECBO used in all datasets.

Table 4: Hyperparameter values used in the experiment

Hyperparameter | Value
v 0.05
o 0.7
o 0.7
B 0
Gthr 0.4

B Related Works

From BO to Causal BO. Classical Bayesian Optimization (BO) [1] constructs a probabilistic surrogate
model, commonly a Gaussian Process (GP), along with an acquisition function such as Expected Improvement
(EI) or Upper Confidence Bound (UCB) to efficiently search for the optimum of an expensive black-box objective.
Causal Bayesian Optimization (CBO) [2] extends this framework by integrating Structural Causal Models (SCMs)
and do-calculus into the BO paradigm. This elevates the notion of an “evaluation point” from an input (z) to an
intervention (do(X = z)), enabling the search space to be pruned on the causal graph via concepts such as MIS
and POMIS. Moreover, CBO leverages causal priors as GP means or structured kernels and employs causal BT
with cost- or observation-intervention trade-offs to guide sampling. Together, these ideas establish a general
framework for sample-efficient exploration and exploitation under causal graph constraints.

CBO with a known graph. The core CBO framework restricts actions to minimal or possibly-optimal
intervention sets (MIS/POMIS), initializes causal GP surrogates with do-calculus priors, and uses causal expected
improvement with cost and an observation—intervention trade-off. Constrained CBO (cCBO) [19] introduces
¢MIS pruning and feasibility-weighted cEI to satisfy safety constraints. High-dimensional CBO (HCBO) [29]
replaces exhaustive MIS search with a submodular coverage heuristic that builds an efficient causal-coverage set
(ECCIS) and compares subsets via a normalized UCB score. Multi-objective CBO (MO-CBO) [34] decomposes
the search into local problems over possibly Pareto-optimal MIS and drives selection by relative hypervolume
improvement. Dynamic CBO (DCBO) [13] transfers interventional information over time through a recursion
on the graph and applies time-aware CEL.
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Intervention-space and policy extensions. Model-based CBO (MCBO) [4] learns the full SCM by fitting
a GP to each mechanism, propagates uncertainty through the graph, and selects actions via an optimism (UCB)
rule with non-asymptotic regret bounds. Functional CBO (fCBO) [12] searches over policies 7 : C'— X in
an RKHS and uses functional EI. Contextual CBO (CoCaBO) [37] separates scope selection and within-scope
optimization using a bandit layer (MAB-UCB) over mixed policy scopes and a BO inner loop. Adversarial CBO
(ACBO) [33] casts CBO as a game and combines a multiplicative-weights update with a causal UCB oracle for
no-regret learning under strategic or non-stationary interference.

Unknown causal structure. Causal Entropy Optimization (CEO) [30] maintains a posterior over graphs
and chooses interventions by expected information gain on the optimizer, effectively performing Bayesian model
averaging over SCMs. Graph-Agnostic CBO (GACBO) [31] maintains a confidence set of plausible graphs and
mechanisms and applies an optimistic UCB over this set, providing a scalable alternative to entropy-based
selection.

Robustness and priors. Noise-robust CBO [36] adjusts EI to counter measurement noise and initializes GP
means with supervised priors learned from observational data, improving early-stage stability.

Positioning of ECBO. Complementary to the directions above, ECBO centers on expert—algorithm collab-
oration and safe handover.

(1) Unlike ¢cCBO [19], which emphasizes hard-constraint feasibility, ECBO focuses on a risk-aware transition
strategy that dynamically balances trust between expert advice and data-driven evidence.

(2) In contrast to f{CBO [12] or CoCaBO [37], which pursue conditional or policy optimality, ECBO explicitly
models when to follow expert guidance and when to switch to autonomous decision-making as part of the acqui-
sition process, adapting over time with changing uncertainty and cost.

(3) Compared with MCBO [4] and ACBO [33], which stress optimistic uncertainty propagation or adversarial
robustness, ECBO highlights a closed-loop update between expert priors and intervention feedback, producing
interpretable trust curves and ensuring safe transitions.

Overall, ECBO unifies causal priors, safety and cost considerations, and dynamic expert trust within the Bayesian
optimization loop, filling a crucial gap in the CBO landscape for human-machine collaborative decision-making.

C Preference Modeling Weight Calculation

According to main text Section 3.1, we have four types of preferences: Exclude, Promote, Suppress and
Uncertain. Let us assume that their weights wy, (74 (x;)) are:

e Exclude: 0.1
e Promote: 1.2
e Suppress: 0.8

e Uncertain: 1

In example of Diabetes, we have two interventional variables: Insulin and BloodPressue, which represents the
amount of insulin the patient takes and the blood pressure of the patient. In order to suppress the target outcome,
the possibility that the patient has diabetes, expert preference suggests to Promote Insulin and Suppress the
BloodPressure. Therefore, in case of different intervention sets, the w(x) will be:

e Insulin: 1.2
o BloodPressure: 0.8

e Insulin, BloodPressure: 1.2 * 0.8 = 0.96



D Proofs for §3.5

Proof of Lemma 1. Since co and w are bounded and n; € [0, 1], Eq. (14) implies

1 + Tt (wmax -

1 n'lin_1 1
LA 0 (Wmin — 1) oy < ECEI < JeL. O

Cmax Cmin

Proof of Theorem 1. By the p;-approximation,
ECEI(z;) > p; maxECEI(z) > p; tmin,: max EI(x).

Also ECEI(27°) < amax,t EI(z¢¢). Thus

El(z{%) > (Pt Oémin,t/Oémax,t> max EI(z),

and replacing the maximum by xP®° gives the claim. O

Proof of Theorem 2. When n, = 0, ECEI = EI/co. With a fixed candidate pool and fixed positive co, the
maximizers of ECEI and EI coincide; with identical histories, the two policies agree for all t > 7. [

Proof of Theorem 3. Let IP3¢ = max, ¢ geand Ely(2) and ;¢ = El;(2§°). By Theorem 1, I;® > keIPase. If
inf; k; > 0, or once the coupling of Theorem 2 applies, ECBO-EI’s per-step improvement is of the same order
as the baseline’s, hence it inherits the best-so-far and cumulative regret rates. O

E Complexity Analysis

Computational complexity. Let M = |Sexp| and ng(t) be the number of interventional data used by GP Gg
at round t. Each round optimizes ECEI® for all S with a small inner budget Kg(t) of acquisition evaluations.
With a cached Cholesky, one GP posterior (and gradient) call is O(ng(t)?). Acquisition over all subsets therefore

costs O( > 5eSu, Ks(t) nS(t)2> per round. We then refit only Gs,; exact GP training is O(ng, (t+1)3). Selecting
the best tuple in C; is O(M). Hence the per-round time is O( Yo Ks(t) ns(t)Q) + O(ns, (t+1)%), typically

dominated by the cubic update when data accumulate. The expert weighting and safety checks add only lower-
order overhead and do not change these rates.

Space complexity. We keep one GP per subset. Storing the Cholesky factor for Gg uses O(ngs(t)?) memory
(inputs add O(ng(t)) to constants). Total memory at round t is O( ZSeSexp ﬂs(t)2>7 dominated by the quadratic
GP terms. If data are spread roughly evenly across M subsets, ng(t)~t/M and memory scales as O(t>/M).

F Baseline Details

e BO [2]: Constructs a probabilistic surrogate model, commonly a Gaussian Process (GP), along with an
acquisition function

e CBO [2]: Extend the BO framework by integrating Structural Causal Models (SCMs) and the do-calculus.

e MCBO [4]: Learn the full SCM by fitting a GP to each mechanism, propagates uncertainty through the
graph. MCBO supports both soft and hard interventions; we only consider its performance under the hard
intervention setting to align with our experimental setup.

e HCBO [29]: Build an efficient causal-coverage set to support high dimension SCM optimization by exhaus-
tive MIS search with a submodular coverage heuristic.

e cCBO [19]: Introduce ¢cMIS pruning and feasibility-weighted cEI to satisfy safety constraints.

e DCBO [13]: Transfers interventional information over time through a recursion on the graph and applies
CEIL Although it mainly addresses a dynamic SCM that changes over time, it also supports the fixed SCM
optimization task.
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Table 5: Summary of existing CBO works

Model ‘ SCM ‘Intervention Type‘ Acquisition

CBO fixed hard causal EI
MCBO fixed hard/soft UCB
HCBO fixed hard ISSF & UCB
fCBO fixed hard/soft causal EI
cCBO fixed hard constrained EI
ACBO fixed soft UCB
DCBO | dynamic hard causal EI
ECBO ‘ fixed ‘ hard ‘ expert-EI

X Z Y

Figure 3: ToyGraph SCM. Green nodes presents interventional variables; red node is the target variable.

G Dataset

G.1 ToyGraph

A simple synthetic SCM [2] consisting of three chain-structured nodes: X, Z, and Y, where X and Z are
designated as interventional variables, and Y is the target variable. Figure 3 depicts the generated SCM and
detailed SCM illustrated below:

Exogenous Variable

X (input variable, exogenous)

G.1.1 Endogenous Variables

Z=eX + ez

Y =cosZ — e 4/?0 + ey
Each e, represents an independent noise term.

G.1.2 CompleteGraph

A more complex synthetic SCM [2] comprising seven observed nodes A, B,C, D, E, F,Y and two latent variables
Uy and U;. Among the observed nodes, B, D, E are interventional variables, A, C,F are non-manipulative
variables, and Y is the target one.

Figure 4 depicts the generated SCM and detailed SCM illustrated below:

Latent Variables
Ul =¢€yy NN(O, 1)
U2 = E€¢YB NN(O,I)

Exogenous Variable

FZ&FNN(O,I)



Figure 4: CompleteGraph SCM. Light-Grey nodes are nonintervention variables; dark-grey nodes are latent
variables; green nodes presents interventional variables; red node is the target variable.

statin
age \
SSA cancer
BMI
aspirin

Figure 5: PSA SCM. Light-Grey nodes are nonintervention variables; green nodes presents interventional vari-
ables; red node is the target variable.

Endogenous Variables

A=F*4+U +eq

B=Us+¢p
C=e¢B+4ec

-C

e
D=—

10 +éep

C
E=cosA+ — +¢g
cos +10+€

Y =cosD +sinE + Uy +Usey

Each e, represents an independent noise term.

G.2 PSA

An SCM derived from a real-world healthcare setting [17], involving six observed variables: Age, BMI, Aspirin,
Statin, Cancer, and PSA. The interventional variables in this setting are Aspirin and Statin, and the target
variable is PSA.

Figure 5 depicts the generated SCM and detailed SCM illustrated below:

Exogenous Variable

Age ~ Uniform(55, 75)
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Endogenous Variables

BMI =27.0 — 0.01 Age + epwMmI,
epmr ~ N (0, 0.72)

Aspirin = o(—8.0 + 0.10Age + 0.03BMI) + £aspirin
Statin = o(—13.0 + 0.10Age + 0.20BMI) + esatin

Cancer = 0(2.2 — 0.05Age + 0.01BMI — 0.04 Statin
+ 0.02 Aspirin) 4+ ECancer

PSA =6.8 4+ 0.04 Age — 0.15BMI
— 0.60Statin + 0.55 Aspirin + 1.00 Cancer

+ €psa,
epsa ~ N(0, 0.4%)

o(x) = 1-&-% denotes the sigmoid function, and each e, represents an independent noise term.

G.3 Diabetes

Records from a survey examination of Indian Health Service Hospital [15], including features of number of times
pregancy (Pregnancies), plasma glucose concentration level (Glucose), diastolic blood pressure (BloodPressure),
triceps skin fold thickness (SkinThickness), 2-hour serum insulin level (Insulin), body mass index (BMT), diabetes
pedigree function ( DiabetesPedigreeFunction), Age and Outcome indicating whether being diagnoised as diabetes.
Finally, we determine Insulin and BloodPressure as interventional varibles since they both can be modulated by
drugs.

In LINGAM SCM generation [14], we define Age as exogenous node since it should be caused by other variables
by forcing it has no incoming edges, and we determine Qutcome as target variable by forcing it has no outgoing
edges. The generated SCM passed Root Mean Square Error of Approximation (RMSEA) (< 0.05), Comparative
Fit Index (CFI) (> 0.95) and Tucker-Lewis Index (TLI) (> 0.95) fitting tests:

¢ RMSEA: 030299558883832317

o CFI: 0.9893820750484923

e TLI: 0.9787641500969847
Figure 6 depicts the generated SCM and detailed SCM illustrated below:

G.3.1 Exogenous Variables

DiabetesPedigreeFunction ~ Uniform(0.078, 2.42)
Age ~ Uniform(21.0, 81.0)



> preg
age — BP

BMI ~@ outcome

N

skin

DPE glucose

insulin

Figure 6: Diabetes SCM. Light-Grey nodes are nonintervention variables; green nodes presents interventional
variables; red node is the target variable. Skin denotes SkinThickness, BP refers to BloodPressure, Preg stands
for Pregnancies, and DPF is the abbreviation for DiabetesPedigreeFunction.

G.3.2 Endogenous Variables

Pregnancies = —1.3394 + 0.1560 - Age
Glucose = 74.4170 — 0.2108 - SkinThickness
+ 0.0954 - Insulin + 0.6635 - BMI
+ 0.6608 - Age
BloodPressure = 56.2742 + 0.3860 - Age
SkinThickness = 10.6921 4 0.1988 - BloodPressure
+ 8.5921 - DiabetesPedigreeFunction
—0.2390 - Age
Insulin = 3.2963 + 3.0020 - SkinThickness
+ 31.4762 - DiabetesPedigreeFunction
BMI = 23.2497 + 0.0767 - BloodPressure
+ 0.1677 - SkinThickness
Outcome = 1.7908 — 0.0215 - Pregnancies
— 0.00586 - Glucose
4 0.00091 - BloodPressure
—0.0114 - BMI
— 0.0968 - DiabetesPedigreeFunction
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> statin

age \fSpW

cancer —— BMI
PSA

Figure 7: PSA-CDC SCM. Light-Grey nodes are nonintervention variables; green nodes presents interventional
variables; red node is the target variable.

G.4 PSA-CDC

We collect and process the 2009-2010 Medical Conditions Questionnaire from the National Center for Health
Statistics [16]. A total of 1,746 anonymized individual records were summarized and filtered, each originally has
8 features: Sex, Race, PSA, Age, Aspirin, Statin, Cancer and BMI. We drop the Sex and Race features when
generating the SCM, as they negatively affect LINGAM fitting. Following the approach used for the Diabetes
dataset, we designate Age as the exogenous node and PSA as the target variable during SCM synthesis. The
resulting SCM passes standard goodness-of-fit tests, including RMSEA (< 0.05), CFI (> 0.95), and TLI (>
0.95):

o RMSEA: 0.02918509041898147

o CFI: 0.9834272963873766

o TLI: 0.9585682409684413

Finally, we determine Aspirin and Statin as the interventional variables. Figure 7 depicts the generated SCM
and detailed SCM illustrated below:

G.4.1 Exogenous Variables

DiabetesPedigreeFunction ~ Uniform(0.078, 2.42)
Age ~ Uniform(21.0, 81.0)



G.4.2 Endogenous Variables

Pregnancies = —1.3394 4 0.156 - Age
Glucose = 74.4170 — 0.2108 - SkinThickness
+ 0.0954 - Insulin + 0.6635 - BMI
+ 0.6608 - Age
BloodPressure = 56.2742 + 0.3860 - Age
SkinThickness = 10.6921 + 0.1988 - BloodPressure
+ 8.5921 - DiabetesPedigreeFunction
—0.2390 - Age
Insulin = 3.2963 + 3.0020 - SkinThickness
+ 31.4762 - DiabetesPedigreeFunction
BMI = 23.2497 + 0.0767 - BloodPressure
+ 0.1677 - SkinThickness
Outcome = 1.7908 — 0.0215 - Pregnancies
— 0.00586 - Glucose
+ 0.00091 - BloodPressure
—0.0114 - BMI
— 0.0968 - DiabetesPedigreeFunction

H Metrics Analysis
The GAP metric was introduced in DCBO [13] to quantify optimization efficiency. The GAP metric was defined
as:
y(x7) — y(Xinit) -t ( T - 1)
GAP = | —F—F—7 + 1+ —, 1
y* = y(xinit) r T ( )
—_— —_———

~——
Efficiency Term

Improvement Term Normalization

where y(x) = E[Y | do(X = x)] denotes the objective function, y* is the global optimum, and X, and x; are
the initial and best-evaluated points at trial ¢, respectively. T is the total number of trials, and ¢* denotes the
trial index at which y(x}) is discovered.

H.1 GAP Value Range

In DCBO, it defines that t* = 1, so efficiency term equals % if the algorithm converges at the first trial, which
bound the GAP’s upper limit as 1. However, it also defines the t* = 0 when the algorithm is not converged.
This actually makes the efficiency term equal to 1 with improvement term equal to 0, making the GAP lower

bound become 1 / (1 + %) = % Instead, if t* = T when the algorithm does not converge, both efficiency

term and improvement term will equal to 0, which correctly establish the GAP value range [0, 1]

H.2 Comparison between GAP and PA-GAP

Although the GAP formulation appears reasonable, its limitation becomes clear through simple examples.

In Figure 8, both models start from the same initial optimum of 10 and discover an improved value of 5 at trial
10. Model 1 makes no further progress after trial 10. Model 2 finds the global optimum of 1 at trial 30. With
y* = 1 and T = 40, the original GAP metric gives Model 1 a score of 0.661 for y(x;) = 5 at t* = 10, while
Model 2 receives a lower score of 0.632 for y(x}) = 1 at t* = 30. This outcome is due to ranking bias: both
achieve the same intermediate optimum of 5 at the same trial with the same evaluation budget, yet Model 2,
despite reaching a better final solution, is penalized.
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Figure 8: Demo experiment result comparison of optimization progress between two models
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Figure 9: Diabetes experiment result comparison of optimization progress between two models

The ranking bias arises from two sources: the weak coupling between the improvement term and the efficiency
term, and the dependence on only the final result instead of the entire optimization process.

To address this, we replace addition with multiplication to strengthen the link between improvement and effi-
ciency, making it express in a way of using efficiency term to regularize the improvement term. It also allows us
to removes the need for normalization term and simplifies the formulation. Furthermore, we incorporate averag-
ing across all rounds to capture the full optimization process instead of evaluating solely on the final outcome.
Finally, we introduce our Path-Aware GAP (PA-GAP):

T
Y(Xinit) T—(t—-1)
PA-GAP = — * . 2
T Zl y - y(xmlt> T ( )
= —_——— ~—

Improvement Term Efficiency Term

The new metric constrains the improvement term to [0, 1] and the efﬁmency term to [T, 1]. In the ideal scenario
where the global optimum is reached at trial ¢ = 1 with y(x}) = y*, the score attains its maximum of 1.
Conversely, if no improvement occurs throughout the entire optimization, the score will be 0.

Returning to the example in of Figure 8, the per-trial scores PA-GAP@t for both models are shown in right plot
of Figure 8. PA-GAPQt captures the late improvement of Model 2 at ¢ = 30. Summing PA-GAPQt over all ¢
and averaging yields PA-GAPyoge1 1 = 0.172 and PA-GAPyjoger 2 = 0.191. Thus, PA-GAP mitigates the original
GAP metric’s bias against late-stage improvements by taking in account of the entire optimization trajectory.

In the Diabetes optimization experiment, ECBO improved from the initial value of 0.498 to —0.191 around trial
90, while HCBO converged from 0.374 to 0.084 around trial 28. With the best theoretical value at —0.836,
the GAP score of HCBO is 0.484, compared to 0.305 for ECBO. Although ECBO shows a strong improvement
score, its efficiency score is low. Notably, ECBO discovered a suboptimal value of 0.073 as early as trial 9. If



Table 6: Performance across different trial limits on different datasets. Each value is average + std. across 20
random seeds and initialization of the observation and intervention data. Best values per dataset are in bold.

Trial Limit | Metrics | Model | ToyGraph | CompleteGraph | PSA | Diabetes | PSA_CDC
BO 0.2244+.139 0.198+.155 0.125+.064 0.102+.055 0.385+.203

CBO 0.424+.246 0.172+.124 0.175£.088 0.155+.072 0.367£.211

COBOL 0.447+.270 0.171+£.098 0.126£.072 0.033+.016 0.000+£.000

PA-GAP cCBO 0.235+.135 0.184+.119 0.309+£.293 0.024+.017 0.004+£.002
DCBO 0.465+.288 0.036+.020 0.000+£.000 0.163+.106 0.140+£.091

MCBO 0.071+.045 0.162+.103 0.100+£.093 0.000+.000 0.100+£.082

HCBO 0.285+.162 0.107+£.091 0.010+£.005 0.146+.072 0.105£.072
100 ECBO 0.493%.281 0.299+£.155 0.335+.147 0.176+.091 0.3941+.203
BO 0.346+.204 0.401£.172 0.310£.089 0.148+.082 0.817£.194

CBO 0.810+.198 0.658+.104 0.577+.108 0.296+.109 0.692+.204

COBOL 0.922+.125 0.593+.108 0.623+.031 0.431+£.092 0.000+£.000

GAP cCBO 0.730+.102 0.691+.123 0.842+4+.132 0.228+.076 0.501+£.129
DCBO 0.949+.213 0.482+.032 0.487+£.004 0.448+.098 0.507£.066

MCBO 0.547+.142 0.652+.132 0.510£.104 0.000+£.000 0.527£.103

HCBO 0.727+.136 0.559+.106 0.335+.032 0.484+.132 0.543+.032
ECBO 0.988+.124 0.538+.151 0.684£.082 0.305+£.192 0.822+.195

BO 0.177+.129 0.130+.095 0.120+£.064 0.096+.053 0.317£.179

CBO 0.421+.238 0.131+.113 0.131+£.082 0.109+.049 0.349+£.209

COBOL 0.407+.259 0.167+.094 0.127£.078 0.034+.106 0.000%£.000

PA-GAP cCBO 0.233+.134 0.191+.074 0.263+£.170 0.011+.012 0.004+£.002
DCBO 0.410+.288 0.033+.018 0.000+£.000 0.180+.101 0.110+.084

MCBO 0.063+.044 0.150+.099 0.034+£.049 0.000+£.000 0.033£.034

HCBO 0.262+.147 0.050+.060 0.009+£.005 0.136+.046 0.063£.046
50 ECBO 0.498+.281 0.270+£.145 0.2661+.128 0.137+.086 0.368+.179
BO 0.296+.192 0.531+.082 0.366£.086 0.143+.032 0.809+.146

CBO 0.676+.201 0.597+.108 0.598+.087 0.321+182 0.487+.172

COBOL 0.853+.145 0.508+.119 0.621+£.032 0.528+.089 0.000+£.000

GAP cCBO 0.723+£.098 0.565+.103 0.758+.121 0.178+.052 0.498+.031
DCBO 0.896+.183 0.422+.012 0.474+£.002 0.630+.078 0.332+£.032

MCBO 0.513+.106 0.630+.099 0.315+.087 0.000+.000 0.342+.098

HCBO 0.643+.132 0.4324.087 0.155+.010 0.304+.102 0.421+£.016

ECBO 0.988+.121 0.578+.125 0.448£.112 0.267+£.153 0.717£.103
BO 0.088+.096 0.026+.035 0.121+£.064 0.085+.042 0.3654.148

CBO 0.392+.228 0.034+.053 0.034+£.081 0.067+£.033 0.311+£.208

COBOL 0.298+.227 0.1554+.087 0.132+.072 0.035+.106 0.000+£.000

PA-GAP cCBO 0.227+.131 0.147+.077 0.143+.030 0.000+.000 0.004+.002
DCBO 0.526+.288 0.024+.013 0.000+£.000 0.145+.077 0.048+£.057

MCBO 0.040+.037 0.116+.092 0.000+£.000 0.000+£.000 0.000%£.000

HCBO 0.200+.177 0.000+.001 0.008+£.004 0.121+.010 0.017£.010

20 ECBO 0.513+.281 0.223+.107 0.182+.069 0.085+.057 0.290+142
BO 0.383+.098 0.239+.062 0.604+.069 0.485+.042 0.657+.163
CBO 0.510+£198 0.392+.089 0.392+£.092 0.246+.125 0.809+.163

COBOL 0.636+.178 0.235+.072 0.615+.025 0.521+.082 0.000%£.000

GAP cCBO 0.702+.103 0.367+.098 0.490+£.083 0.000+£.000 0.490+£.025
DCBO 0.729+.172 0.231+.011 0.432+.001 0.508+.067 0.406+.032

MCBO 0.406+.089 0.558+.072 0.000+£.000 0.000+.000 0.000+£.000

HCBO 0.372+.098 0.166+.010 0.1724£.003 0.314+.052 0.113+£.009

ECBO 0.987+.102 0.559+£.107 0.550£.108 0.453+£.132 0.414£.104

optimization had stopped there, ECBO would achieve a higher GAP score of 0.617.

In contrast, PA-GAP computes the average PA-GAP@t across all trials, thereby reflecting the entire optimization
trajectory. Under this metric, ECBO achieves a PA-GAP of 0.176, while HCBO scores 0.146.

I Extended Experiment

Table 6 extends the experiment to different trial limits to simulate performance under varying budget constraints.
ECBO achieves the best PA-GAP performance with trial limits of 100 and 50. However, BO and DCBO
outperform when the limit is 20, indicating faster convergence and an advantage under tight budgets. ECBO
shows advantages in GAP score due to its continued optimization, which raises the improvement term but lowers
efficiency, resulting in reduced overall GAP despite sustained progress.
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J Wrong SCMs

In Section 4.5, we manually constructed incorrect SCMs for four datasets: ToyGraph, PSA, Diabetes and
PSA_CDC. Each dataset includes two types of incorrect SCMs: Missing Edge and Missing Node.

Figure 10 illustrates the ToyGraph dataset, where the Original label denotes the correct SCM. In the Missing
Edge version, the edge X — Z is removed and a compensatory edge X — Y is added to ensure node X remains
connected. In the Missing Node version, node X and its outgoing edge X — Z are completely removed.

Figure 11 illustrates the PSA dataset, where the Original label denotes the correct SCM. In the Missing Edge
version, the edge age — PSA and BMI — PSA. In the Missing Node version, node cancer and its connected
edges are completely removed.

Figure 12 illustrates the Diabetes dataset, where the Original label denotes the correct SCM. In the Missing
Edge version, the edge age — glucose and BM I — glucose. In the Missing Node version, node preg and its
connected edges are completely removed.

Figure 13 illustrates the PSA_CDC dataset, where the Original label denotes the correct SCM. In the Missing
Edge version, the edge age — BM1I and age — statin. In the Missing Node version, node cancer and its
connected edges are completely removed.

K Expert Preference

Table 7 summarizes the expert preferences used for ECBO.
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Figure 13: Wrong SCMs of PSA_CDC we used

Table 7: Expert-preference settings for each dataset.

Dataset ‘ Variable ‘ ECBO
X exclude
ToyGraph Z promote
B exclude
CompleteGraph D uncertain
E uncertain
Aspirin promote
PSA Statin uncertain
. Insulin promote
Diabetes BloodPressure | suppress
PSA_CDC Asp1r.1n promote
Statin suppress




