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Abstract—Time series generation focuses on modeling the
underlying data distribution and resampling to produce authentic
time series data. Key components, such as trend and seasonality,
drive temporal fluctuations, yet many existing approaches fail
to employ interpretative decomposition methods, limiting their
ability to synthesize meaningful trend and seasonal patterns.
To address this gap, we introduce Seasonal-Trend Diffusion
(STDiffusion), a novel framework for multivariate time series
generation that integrates diffusion probabilistic models with
advanced learnable series decomposition techniques, enhancing
the interpretability of the generation process. Our approach
separates the trend and seasonal learning into distinct blocks:
a Multi-Layer Perceptron (MLP) structure captures the trend,
while adaptive wavelet distillation facilitates effective multi-
resolution learning of seasonal components. This decomposition
improves the interpretability of the model on multiple scales. In
addition, we designed a comprehensive correction mechanism
aimed at ensuring that the generated components exhibit a
high degree of internal consistency and preserve meaningful
interrelationships with one another.

Our empirical studies on eight real-world datasets demon-
strate that STDiffusion achieves state-of-the-art performance
in time series generation tasks. Furthermore, we extend the
model’s application to multi-window long-sequence time series
generation, which delivered reliable results and highlighted its
robustness and versatility. The source code of our model is
officially released as STDiffusion on Github https://github.com/
mobkageyama/STDiffusion.

Index Terms—time series generation; diffusion model; wavelet
transformation; moving average

I. INTRODUCTION

Time series data, which record sequential observations over
time, are critical for decision-making in domains like finance,
healthcare, and energy [1] [2]. Yet real-world datasets are often
limited by issues such as data scarcity, missing values, or
privacy concerns [3]. Generating realistic synthetic time series
can help alleviate these constraints, enabling more robust
model development and evaluation. However, the inherent
sequential nature and temporal dependencies of time series
data present unique challenges in creating such synthetic
datasets [4]. Recognizing these challenges, Generative Adver-
sarial Networks (GANs) and Variational Autoencoders (VAEs)
have been widely applied to time series generation. However,
GANs often suffer from training instability and mode collapse
[7] [8], while VAEs tend to produce overly smooth or blurry

outputs due to posterior mismatch, limiting their effectiveness
in capturing fine-grained temporal structures [19].

To overcome these challenges, diffusion models have re-
cently emerged as a powerful alternative. Originally successful
in the domains of image, speech, and text generation [12] [13]
[14], diffusion models have demonstrated stronger compati-
bility and stability than traditional generative methods when
modeling complex temporal dynamics [15]. Unlike GANs, dif-
fusion models avoid mode collapse by learning to approximate
the full data distribution via a gradual denoising process [18].
Compared to VAEs, they achieve sharper and more structured
outputs without sacrificing probabilistic modeling.

In the context of time series, diffusion models have shown
great potential in handling diverse tasks such as forecasting,
imputation, and anomaly detection [16] [17]. Meanwhile,
several advanced time series generation methods have been
proposed, such as FTS-Diffusion [20], which synthesizes
financial time series by capturing irregular and scale-invariant
patterns, and Diffusion-TS [21] integrate sequence decomposi-
tion in latent space via one-dimensional convolution to capture
trend and seasonal components, improving the quality of the
generation.

Although Diffusion-TS claims interpretability by applying
decomposition frameworks in high-dimensional latent spaces,
their reliance on neural network embeddings inherently limits
transparency. It remains unclear whether the extracted compo-
nents correspond to comprehensible structures such as trends
and seasonality. In contrast, traditional time series decom-
position methods operate directly on raw data, segmenting
the series into additive or multiplicative components under
fixed assumptions. These approaches effectively isolate trends,
seasonality, and residuals without relying on learned high-
dimensional representations [22].

To bridge the gap between interpretability and the repre-
sentational power of deep models, we propose STDiffusion, a
novel diffusion-based framework that integrates the strengths
of traditional decomposition with the flexibility of neural
architectures. Specifically, we introduce a learnable trend-
seasonal decomposition applied directly to raw inputs rather
than latent embeddings. By employing a Learnable Moving
Average (LMA) mechanism, STDiffusion extracts components
with explicit semantic meaning that are retained and explicitly
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modeled throughout the generation process. Unlike black-box
models such as Diffusion-TS, which perform repeated decom-
position on hidden states, our method produces disentangled
and interpretable signals in a single stage, improving both
clarity and efficiency.

Although our decomposition strategy encourages statistical
separation of trend and seasonal components, this typically
holds only in a low-order sense, such as decorrelation in
frequency or moving average domains. Real-world time se-
ries often exhibit complex high-order dependencies, including
delayed effects or causal interactions across varying temporal
resolutions [48]. To address this, we introduce a seasonal-
trend correction module, enabling mutual conditioning be-
tween components. The correction mechanism provides con-
sistent scaling across components, which is critical in high-
dimensional settings to prevent signal collapse and instability
during generation. Moreover, this mechanism restores coherent
joint dynamics that may otherwise be lost under marginally
independent modeling assumptions, ensuring temporal consis-
tency and scale alignment critical for generating stable and
interpretable sequences.

The main contributions of our work can be summarized as
follows:

• We propose STDiffusion, a diffusion-based genera-
tive framework that introduces component-wise inter-
pretable modeling in time series generation, combining
the strengths of traditional decomposition and modern
deep learning.

• We develop a learnable moving average (LMA) module
that operates directly on raw input, enabling the data-
adaptive extraction of trend and seasonal components
with explicit semantic meaning.

• We design a seasonal-trend correction (STCorrection)
module to capture high-order dependencies and ensure
coherent alignment between components, addressing the
limitations of marginally independent modeling and en-
hancing temporal consistency of generated sequences.

• We demonstrate that STDiffusion achieves state-of-the-
art performance across diverse benchmarks, and gener-
alizes well to long-sequence generation tasks, showcas-
ing its robustness and scalability.

II. RELATED WORK

A. GAN-based Works
GAN-based models are crucial in many early stage gen-

eration tasks. C-RNN-GAN [46] was one of the earliest
works to apply GANs to sequential data, using recurrent
neural networks for both the generator and the discriminator.
RCGAN [4] employs recurrent neural networks (RNNs) in
both the generator and the discriminator for sequential data
generation, with the conditional variant incorporating auxiliary
information to guide the process, making it ideal for context-
sensitive tasks. Not only relies solely on adversarial feedback,
TimeGAN [5] introduces a supervised loss to explicitly model
stepwise temporal relationships, ensuring that generated se-
quences closely align with the conditional distributions in the

training data. COT-GAN [6] optimizes the generator with an
adversarial loss based on causal optimal transport, integrating
optimal transport with temporal causality constraints, making
it ideal for time-dependent data distributions.

B. VAE-based Works

VAE-based models are alternative generation models with
comparable performance and greater efficiency. TimeVAE [9]
provides a stable alternative by modeling sequences with a
Gaussian prior, with the ability to encode domain knowl-
edge and incorporating trend and seasonality information into
the decoder. CR-VAE [10] combines Granger causal graph
learning with a multihead decoder and an error compensation
module to account for residual influences, ensuring accurate
modeling while uncovering causal relationships among the
variables. KoVAE [11], inspired by Koopman theory, uses a
novel model prior with a linear map in the latent space to
generate time series from both regular and irregular data.

C. Diffusion-based Works

Given the capability of diffusion models to address the chal-
lenging problem of high-quality time series generation, several
advanced methods have been proposed recently. GuidedDiff-
Time [47] supports both soft and hard constraints during
generation and eliminates the need for model retraining,
enabling efficient and realistic synthesis of counterfactual
time series in several domains. FTS-Diffusion [20] uses a
diffusion-based network to synthesize financial time series by
recognizing and generating irregular, scale-invariant patterns.
Unlike traditional diffusion-based models, Diffusion-TS [21]
employs an encoder-decoder transformer with disentangled
temporal representations and a Fourier-based loss term to
directly reconstruct the sample instead of the noise in each
diffusion step.

III. METHODOLOGY

In this section, we introduce the key components of STDif-
fusion shown in Fig. 1, detailing their functional mechanisms
and theoretical foundations. The pseudocode of the framework
is described in Algorithm1.

Our model is based on the denoising diffusion probabilistic
framework [18] to generate realistic time series by explicitly
modeling temporal components. The diffusion process consists
of two phases: training and sampling. During the training
phase, Gaussian noise is gradually added to a clean sequence
x0, transforming it into a latent variable xS ∼ N (0, I)
through a forward process q(xs | xs−1). A score-based
model is then trained to approximate the reverse denoising
process pθ(xs−1 | xs), using a noise estimator ϵθ to predict
the injected noise at each step. The objective minimizes the
discrepancy between the true and predicted noise:

L(x0) := min
θ

Ex0,s ∥ϵ− ϵθ(xs, s)∥2 . (1)

In the sampling phase, a latent xS is drawn from a standard
Gaussian distribution N (0, I), and the learned reverse process



pθ is applied iteratively to generate a sample x0 that resembles
the original data distribution.

At each denoising step s, the model enhances temporal
awareness by decomposing xs using a Learnable Moving
Average module (LMA-De), which yields trend and seasonal
components, where season denotes the seasonal pattern plus
residual error. These components are separately encoded and
refined through dedicated Season and Trend Blocks and then
reconciled via a Seasonal-Trend Correction module to capture
their interaction. The adjusted representations are decoded and
reassembled through LMA-Re to produce a denoised estimate
x̂0. During the sampling phase, the generation begins from
pure Gaussian noise xS ∼ N (0, I), and the trained reverse
process pθ(xs−1 | xs), guided by the same component-aware
architecture, is applied iteratively to reconstruct a realistic time
series sample that reflects the underlying structural dynamics
of the data.
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Fig. 1. Illustrations of model structure consists of two parts: (a)A diffusion
model schema involving add-noise and de-noise stages. (b) STDiffusion model
essential components and pipeline.

A. Learnable Moving Average

One of our key contributions is the Learnable Moving
Average (LMA), which adaptively balances the extraction of
global trends with the preservation of local variations. Unlike
traditional moving average methods [23], [27], which rely on
fixed-size average pooling windows and often blur important
local structures across different datasets, LMA introduces a re-
versible, learnable mechanism that dynamically adjusts to the
underlying data. This enables the model to retain meaningful
local details while still capturing broader temporal patterns.
The design of this mechanism is illustrated as F(γ, β, ω) and
F(γ, β) in Fig. 2.

The LMA operates in two stages: decomposition and
restoration, as illustrated in Fig. 2. During decomposition, the
noisy input sequence xs is separated into a trend component
T and a seasonal component S. In the restoration stage, these
components are recombined to produce the final prediction.

1) Decomposition: The LMA begins with a latent input
time series xS ∈ RL×K , obtained by adding Gaussian noise

Algorithm 1 Diffusion Framework
Require: Data distribution q(x0), steps S, schedule {βs}Ss=1

Training Phase:
repeat

x0 ∼ q(x0), s ∼ Uniform(1, . . . , S)
ϵ ∼ N (0, I)
xs =

√
ᾱsx0 +

√
1− ᾱtϵ

Update θ with ∇θ|ϵ− ϵθ(xs, s)|2
until converged

Require: Model parameters θ, steps S, schedule {βs}Ss=1

Sampling Phase:
xs ∼ N (0, I)
for s = S, . . . , 1 do

if s > 1 then
z ∼ N (0, I)

else
z = 0

end if
xs−1 = 1√

αs

(
xs − βs√

1−ᾱs
ϵθ(xs, s)

)
+ σsz

end for
return x0
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Fig. 2. Learnable Moving Average pipeline: (a) upper part depicts the
decomposition, and (b) lower part describes the restoration. ⊕ refers element-
wise addition, and ⊖ refers element-wise deduction.

to the original sequence x0 ∈ RL×K . To extract trend infor-
mation, we compute multiple kernel-based moving averages
using window sizes lk ∈ {1, 2, 4, 6, 12}. For the k-th moving
average with window size lk in timestep t: MAk(t) =
1
lk

∑lk−1
i=0 xs

t−i. We combined all moving averages into a
vector: [MA1(t),MA2(t), ...,MA5(t)], and an MLP followed
by a softmax layer learns the weights [w1, w2, ..., w5], where∑5

i=1 wi = 1. Subsequently, to capture local contextual
information on trends, we apply an affine transformation with
learnable scale γ and bias β, which are stored and later reused
in the restoration stage. This trend extraction process can be
expressed as

T = F(γ, β, ω) = γ ·
N∑
i=1

wi · (
∑li−1

j=0 xs
t−j

li
) + β, (2)

which corresponds to F(γ, β, ω) in the upper part of Fig. 2.



After obtaining the final trend component T , we define the
seasonality component S as the subtractive offset of the trend
from the input xs.

2) Restoration: Restoration begins after the Seasonal-Trend
Correction module (see Section D). The corrected trend T cr

and seasonality are first decoded to their original dimensions,
after which LMA-Re applies the stored affine parameters to
the trend and combines them with the seasonality to produce
the final model output as follows:

x̂0 = F(γ, β) =
T̂ cr − β

γ
+ Ŝcr, (3)

where F(γ, β) is also mentioned in the lower part of Fig. 2.

B. Trend Learning Block (TLBlock)

To capture trend patterns, we design a TLBlock that pro-
cesses the extracted trend components. This block begins
by applying instance normalization to mitigate distributional
shifts and stabilize the input, then passes the normalized
features through multiple residual-connected MLP layers, and
finally denormalizes the outputs to restore the original scale.
This architecture aligns with the findings of TDformer [26],
which show that MLPs are particularly effective in modeling
trends, as they avoid the softmax-induced polarization effect
in attention mechanisms that tends to overemphasize low-
frequency signals. However, directly applying MLPs to raw
trend signals can still be problematic under non-stationary
conditions, where distribution shifts undermine model stability.
To address this, we integrate reversible instance normalization
(RevIN) [25] into our TLBlock to normalize such shifts during
training while retaining the ability to reconstruct the true signal
scale, ensuring robust and interpretable trend representation.
The calculation in TLBlock is formulated as follows:

T̂ = RevINre

(
N∑
i=1

MLP (RevINnorm(T ))

)
, (4)

where RevINre and RevINnorm denote restoration and
normalization operations, respectively.

C. Seasonal Learning Block (SLBlock)

To model the seasonal component, we introduce a learnable
wavelet transformation that aligns naturally with the mul-
tiscale and hierarchical nature of time series. This method
has also demonstrated strong performance in tasks such as
cosmology and molecular-partner prediction by effectively
extracting distribution-specific features [24]. Our learnable
wavelet enhanced with a learnable low-pass filter hθ is able
to decompose seasonality according to the intrinsic pattern
of the data. Unlike regular wavelet transformation that bru-
tally decomposes along the middle frequency, our learnable
wavelet decomposes seasonality according to the data intrinsic
patterns, adaptively providing interpretable frequencies. Intu-
itively, this allows the model to adaptively focus on frequency
components that are most informative for the given data. The
SLblock consists of three stages: learnable wavelet decom-
position, frequency learning, and wavelet reconstruction. We

use order-3 Daubechies wavelets (db3) [40] with periodic
boundary conditions in our wavelet transformation setup.

1) Learnable Wavelet Decomposition: The seasonal input
S is processed through a learnable low-pass filter hθ. At each
scale level j, the input approximation coefficients aj [n] are
convolved with the low-pass filter hθ and the high-pass filter
g, followed by downsampling by a factor of 2. This yields
the next-level approximation coefficients aj+1[p] and detail
coefficients dj+1[p].{

aj+1[p] =
∑

n hθ[n− 2p]aj [n] = aj ⋆ hθ[−2p]

dj+1[p] =
∑

n g[n− 2p]aj [n] = aj ⋆ g[−2p]
, (5)

Specifically, aj ⋆ hθ[−2p] and aj ⋆ g[−2p] represent the
strided convolutions that enable multi-resolution analysis. Un-
like fixed filters in traditional wavelet transforms, the learnable
hθ adapts to the data, allowing more flexible and data-driven
decomposition.

In summary, the seasonal input a0 = S is decomposed
through a multilevel wavelet transform into a set of frequency
components. At each level of decomposition j, the detail
coefficient (high frequency) is denoted by dj , and the approx-
imation coefficient (low frequency) is denoted by aj . After
J levels of decomposition, we obtain a sequence of detail
components d1, d2, . . . , dJ , along with a final approximation
component aJ . For simplicity, we define a unified notation
F i

Li
to represent these components, where:

• F i
Li

= di for i = 1, 2, . . . , J(detail frequencies),
• FJ+1

LJ+1
= aJ (approximation frequency).

2) Frequency Learning: After we decompose seasonality
into frequencies, we apply a self-attention mechanism [28] to
model the interactions among these frequency patterns, with
formulation as follows:

F̂ i
Li

= softmax

(
Q

Fi

(K
Fi

)T√
dk

)
V

Fi

, i = 1, 2, . . . (6)

where F̂ i
L1 denotes the predicted frequency of the ith level

with length Li. Q
Fi

, K
Fi

, and V
Fi

are the three different
linear transformations of F i

Li
, and dk is the dimension of K

Fi

.
3) Wavelet Reconstruction: After obtaining the learned

frequencies F̂ i
Li, we employ learnable wavelets to reconstruct

these frequencies into the predicted seasonality Ŝ. Equation
(7) defines the wavelet reconstruction process, where the signal
on scale j, denoted by âj [p], is recovered by combining the
predicted approximation coefficients âj+1[n] and the detail
coefficients d̂j+1[n] from the finer scale j+1. This is achieved
through convolution with the learnable low-pass filter hθ and
high-pass filter g, followed by upsampling:

âj [p] =
∑
n

hθ[p− 2n]âj+1[n] +
∑
n

g[p− 2n]d̂j+1[n], (7)

where the hθ parameters are shared with those used in the
decomposition stage. Similarly, we define F̂ i

Li
= d̂i for

i = 1, 2, . . . and F̂J+1
LJ+1

= âJ . The predicted seasonality Ŝ
corresponds to the reconstructed signal â0, which is obtained
by inverting the wavelet transform using âJ and d̂1, . . . , d̂J .



D. Seasonal-Trend Correction
After TLBlock and SLBlock produce their learned trends

T̂ and seasonality Ŝ, we still need to further correct for their
latent representations.

We first project the predicted trend T̂ and seasonality Ŝ
into a double channel space, then divide it into two halves by
operation chunk: chunk : RL×2d → RL×d × RL×d. Half
serves as input, while the other functions as conditional term:

[T̂ in, T̂ cnd] = chunk(MLP(T̂ )), T̂ in, T̂ cnd ∈ RL×d

[Ŝin, Ŝcnd] = chunk(MLP(Ŝ)), Ŝin, Ŝcnd ∈ RL×d (8)

where T̂ in and Ŝin represent input terms; T̂ cnd and Ŝcnd

denote conditional terms.

Seasonal-Trend Correction
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Fig. 3. Seasonal-Trend Correction module. Predicted trend and seasonality
are refined via cross-attention between input and conditional branches.

To perform a correction, we adopt the attention-based in-
teraction mechanism proposed in [28], as illustrated in Fig. 3.
Specifically, the predicted trend and seasonality from the input
stream, T̂ in and Ŝin, are projected into the query space Q,
while the corresponding components of the conditional stream,
T̂ cnd and Ŝcnd, are used to compute the keys K and the values
V, which are performed as:

T̂ cr = A(QT̂ in

,KŜcnd

, V Ŝcnd

), (9)

Ŝcr = A(QŜin

,K T̂ cnd

, V T̂ cnd

), (10)

with linear transformations: QT̂ in

= T̂ inWQ, KŜcnd

=

ŜcndWK , V Ŝcnd

= ŜcndWV , and similarly for the seasonal
component. Here, WQ, WK , and WV are learnable projection
matrices, and dk denotes the dimensionality of the key vectors.
The corrected representations T̂ cr and Ŝcr are then forwarded
to the LMA-Re module for final reconstruction.

IV. EXPERIMENT

A. Experiment Setting
1) Baselines: We compare STDiffusion with six baseline

models that span three categories: GAN-based models includ-
ing TimeGAN [5] and Cot-GAN [6], VAE-based approaches
including TimeVAE [9] and KoVAE [11], and diffusion-
based methods including Diffusion-TS [21] and Diffwave [39].
These selections provide a thorough evaluation across different
methodological approaches to time series generation. We also
select eight real-world datasets elaborated in Table I for an
in-depth comparison among the models.

TABLE I
SUMMARY OF DATASETS USED IN EXPERIMENTS

Dataset Timestamps Features Interval
ETTh1 [34] 17,520 8 1 hour
ETTh2 [34] 17,520 8 1 hour
Energy [35] 19,735 28 10 minutes
fMRI [45] 10000 50 2 seconds
Stock [44] 3773a 7 1 day
Exchange [36] 9,496a 8 1 day
Weather [37] 52,560a 21 10 minutes
Occupancy [38] 10,129 18 30 seconds
aCalculated based on given date ranges

B. Metric Definition

1) Visualization: We use three complementary methods to
analyze and visualize time series patterns. Principal Com-
ponent Analysis (PCA) [29] captures global temporal trends
by projecting data onto directions of maximum variance. t-
Distributed Stochastic Neighbor Embedding (t-SNE) [30]
highlights local structure and clustering by minimizing diver-
gence between high- and low-dimensional probability distri-
butions. Data Density Estimation with Gaussian kernels [31]
provides smoothed probability densities for direct comparison
of distributions. Together, these methods offer insights into
global variance, local clustering, and marginal distributions of
real and generated data.

2) Evaluation Metrics: To comprehensively evaluate gen-
eration quality, we employ four metrics that assess different
aspects of the synthetic time series:

• Discriminative Score [5] evaluates distribution similarity
using a GRU classifier to distinguish real from generated
sequences. A score of 0 indicates perfect generation,
while 0.5 suggests the inability to produce meaningful
sequences.

• Predictive Score [5] evaluates temporal dynamics via
one-step-ahead predictions, with a GRU predictor trained
on synthetic data and tested on real data. A score of
0 indicates perfect generation, while 0.5 suggests the
inability to produce meaningful sequences.

• Context-FID [32] measures the distribution distance in
a learned embedding space, where the lower scores
represent a higher similarity between real and synthetic
data.

• Correlational Score [33] assesses temporal dependencies
through cross-autocorrelation, where lower scores indi-
cate better preservation of temporal dependencies.

C. Standard Time Series Generation Results

Table II presents a comprehensive evaluation of our STD-
iffusion against eight baselines in four key metrics, and
our model achieves superior performance in generating high-
quality 24-length time series. For example, STDiffusion re-
duces the discriminative score by approximately 52% relative
to the next-best model and maintains the first place in the
most predictive, Context-FID, and correlation scores. More
specifically, in low-signal, high-noise datasets such as Stocks
and Exchanges, where the improvement reaches more than



TABLE II
STANDARD TIME SERIES GENERATION SCORE WITH A GENERATED SEQUENCE LENGTH OF 24. EACH SCORE IS THE AVERAGE WITH A 95% CONFIDENCE

INTERVAL OF 5 EVALUATION TRIALS. THE BEST RESULTS ARE IN BOLD, AND THE SECOND BEST ARE UNDERLINED. ALL SCORES ARE LOWER, THE
BETTER

Metric
Performance Measures

Model ETTh1 ETTh2 Energy fMRI Stock Exchange Weather Occupancy

Discriminative
Score

y
STDiffusion 0.025±.010 0.016±.010 0.107±.011 0.157±.046 0.006±.005 0.004±.003 0.071±.005 0.066±.026
Diffusion-TS 0.061±.009 0.038±.005 0.122±.009 0.167±.023 0.067±.015 0.034±.019 0.161±.007 0.120±.025

TimeGAN 0.114±.055 0.094±.014 0.236±.012 0.484±.042 0.102±.021 0.275±.060 0.378±.042 0.365±.014
TimeVAE 0.244±.055 0.099±.075 0.499±.000 0.476±.044 0.145±.120 0.106±.043 0.391±.022 0.499±.023
KoVAE 0.201±.022 0.140±.064 0.373±.050 0.470±.046 0.124±.085 0.082±.043 0.394±.017 0.324±.035

Diffwave 0.228±.008 0.374±.009 0.479±.005 0.402±.029 0.232±.061 0.318±.009 0.497±.000 0.333±.025
Cot-GAN 0.325±.099 0.499±.000 0.498±.002 0.492±.002 0.230±.016 0.498±.001 0.491±.002 0.436±.138

Predictive Score
y

STDiffusion 0.117±.006 0.105±.002 0.250±.000 0.099±.000 0.036±.000 0.034±.002 0.001±.000 0.009±.000
Diffusion-TS 0.119±.002 0.107±.004 0.250±.009 0.099±.000 0.036±.000 0.034±.002 0.001±.000 0.009±.000

TimeGAN 0.124±.001 0.118±.004 0.273±.004 0.126±.002 0.038±.001 0.066±.002 0.002±.000 0.057±.001
TimeVAE 0.134±.002 0.116±.001 0.277±.000 0.113±.003 0.039±.000 0.038±.001 0.002±.000 0.023±.002
KoVAE 0.126±.003 0.118±.006 0.251±.000 0.175±.007 0.056±.008 0.040±.000 0.002±.000 0.014±.001

Diffwave 0.127±.004 0.147±.006 0.252±.000 0.101±.000 0.047±.000 0.068±.011 0.005±.000 0.042±.002
Cot-GAN 0.129±.000 0.354±.050 0.259±.000 0.185±.003 0.047±0.00 0.042±.211 0.003±.000 0.038±.002
Original 0.121±.005 0.108±.005 0.250±.003 0.090±.001 0.036±.001 0.035±.003 0.001±.000 0.012±.005

Context-FID
Score

y
STDiffusion 0.068±.004 0.038±.006 0.081±.015 0.231±.023 0.014±.002 0.014±.001 0.072±.010 0.061±.006
Diffusion-TS 0.116±.010 0.053±.009 0.089±.024 0.105±.006 0.147±.025 0.053±.006 0.339±.046 0.660±.099

TimeGAN 0.300±.013 0.102±.017 0.767±.103 1.292±.218 0.103±.013 0.359±.068 0.310±.059 0.762±.240
TimeVAE 0.788±.115 0.436±.025 1.790±.091 14.449±.969 0.215±.035 0.254±.050 0.527±.065 0.891±.146
KoVAE 1.508±.206 0.263±.017 0.263±.017 1.761±.158 0.056±.008 0.175±.029 0.432±.025 0.494±.040

Diffwave 1.649±.191 7.081±.866 4.175±.593 0.244±.018 0.232±.032 4.094±.504 3.047±.190 0.991±.133
Cot-GAN 0.980±.071 1.250±.020 1.039±.028 7.813±.550 0.408±.086 4.300±.045 2.420±.040 1.391±.230

Correlation
Score

y
STDiffusion 0.035±.009 0.054±.009 0.802±.170 0.912±.035 0.009±.005 0.043±.019 0.675±.138 0.543±.046
Diffusion-TS 0.049±.008 0.069±.015 0.856±.147 1.411±.042 0.004±.001 0.074±.026 1.388±.040 0.868±.030

TimeGAN 0.210±.006 0.135±.008 4.010±.104 23.503±.039 0.063±.005 0.217±.013 1.916±.055 1.032±.054
TimeVAE 0.104±.013 0.093±.014 2.136±.192 17.296±.526 0.095±.008 0.135±.025 0.970±.096 2.343±.165
KoVAE 0.104±.012 0.240±.017 0.240±.017 7.475±.044 0.060±.011 0.142±.025 0.687±.109 1.599±.195

Diffwave 0.191±.013 0.579±.015 5.360±.077 3.927±.049 0.030±.020 0.611±.022 1.445±.112 1.253±.165
Cot-GAN 0.249±.009 0.110±.009 3.164±.061 26.824±.449 0.087±.004 0.183±.037 1.450±.060 1.373±.085

85%. The method remains robust in high-dimensional datasets
such as energy and fMRI, where it still secures the best (or
second-best) figures in all four metrics, underscoring its ability
to model complex multivariate dynamics.

In the more intuitive visualization analysis shown in Fig. 4,
STDiffusion shows exceptional performance in capturing both
local and global patterns. The t-SNE plots reveal remarkable
preservation of local temporal structures, with generated se-
quences forming well-aligned clusters that closely match the
real data patterns. The data density estimation plots further
validate our model’s state-of-the-art capability in emulating
global data distributions, showing particularly impressive fits
for challenging high-dimensional datasets like Weather (with
complex meteorological patterns) and Occupancy (with mul-
tiple sensor measurements). This superior performance on
large-scale, high-dimensional data underscores STDiffusion’s
scalability and robustness in handling complex real-world time
series data.

D. Long Sequence time series generation result

Long sequence time series generation is crucial for various
real-world applications, such as energy consumption forecast-
ing, financial market simulation, and climate prediction, where

the ability to generate coherent sequences over extended peri-
ods is essential for planning and risk assessment [41] [42] [43].
However, maintaining temporal consistency while preserving
complex dependencies becomes increasingly challenging as
the sequence length grows. To assess the robustness and long-
term generation capability of various models under this con-
straint, we conducted a comprehensive evaluation across three
challenging datasets: ETTh1, ETTh2 and Exchange. These
datasets are characterized by complex temporal structures,
including long-short range trends and strong seasonal effects,
making them ideal for benchmarking long-sequence modeling.

We generate sequence lengths of 64, 128 and 256 with three
datasets and evaluate them with the four previous metrics.
Fig. 5 records each metrics average score of three different
sequence lengths. STDiffusion keeps its lead in almost every
evaluation of the long sequences generation. In addition to
the mean score predominance, the confidence interval is also
narrower than all other models, implying better stability and
robustness of our model. Even on the most volatile Exchange
dataset, it matches the second-best model in predictive score
and sits within 0.04 of the context-FID. This indicates that
STDiffusion is not only strong in modeling structured periodic
data but also robust to noisy and less predictable sequences.



Fig. 4. t-SNE visualizations (top row) compare the original data (red dots) with samples generated by STDiffusion (blue dots). The bottom row presents data
density estimates, showing how the distributions of STDiffusion (blue lines) and Diffusion-TS (green lines) align with the ground truth (red lines).

Fig. 5. Results on ETTh1, ETTh2, and Exchange datasets. Bars show the average scores with 95% confidence intervals for sequence lengths 64, 128, and
256. Lower values indicate better performance across all metrics. Additional score details is provided on the Github Repo https://github.com/mobkageyama/
STDiffusion.

E. Learnable Wavelet Function Visualization

The visualization in Fig. 6 shows approximations of wavelet
functions determined by the low-pass filter coefficients h and
wavelet type under the order-3 Daubechies wavelets (db3)
[40] setting. The orange lines represent standard db3 wavelet
with fixed coefficients, known for their asymmetry and three
vanishing moments, which allow them to model polynomial
signal structures. In contrast, the blue lines illustrate wavelet
functions derived from our learned filter coefficients hθ, which
have been adapted to different data distributions. During train-
ing, hθ is constrained to match the length and orthogonality
properties of standard db3 filters, ensuring that the resulting
basis remains a valid wavelet frame tailored to each dataset’s
frequency distribution.

Across different datasets, these learned wavelets exhibit

distinct adaptations that mirror the dominant spectral charac-
teristics of each time series. In the Exchange dataset, where
seasonality is predominantly low-frequency and relatively sta-
ble, the learned wavelets assume a more pronounced low-
pass profile, yielding a smoother basis compared to the stan-
dard db3. This increased smoothness enables the model to
capture gradual market cycles without exaggerating transient
noise. In the ETTh1 dataset, which represents electricity
transformer load with frequent periodic spikes and higher-
frequency fluctuations, the optimized wavelets show greater
oscillatory behavior to reflect those rapid variations. The
Weather dataset induces the most extreme adaptation: abrupt
temperature or precipitation events create sharp discontinuities,
and accordingly the learned wavelets suppress small-scale
oscillations almost entirely while retaining the ability to react

https://github.com/mobkageyama/STDiffusion
https://github.com/mobkageyama/STDiffusion


TABLE III
ABLATION STUDY FOR KEY COMPONENTS. EACH SCORE IS THE AVERAGE WITH A 95% CONFIDENCE INTERVAL OF 5 EVALUATION TRIALS. FOR ALL

METRICS, LOWER VALUES INDICATE BETTER PERFORMANCE, AND THE BEST RESULTS ARE IN BOLD

Metric Method ETTh1 ETTh2 Energy fMRI Exchange

Discriminative Score
y STDiffusion 0.025±.010 0.016±.010 0.107±.011 0.157±.046 0.004±.003

w/o Learnable Wavelet 0.026±.012 0.020±.010 0.107±.013 0.160±.055 0.004±.006
w/o STCorrection 0.030±.012 0.022±.011 0.114±.014 0.158±.055 0.005±.006
w/o LMA 0.031±.013 0.022±.012 0.120±.016 0.200±.060 0.005±.007

Predictive Score
y STDiffusion 0.117±.006 0.105±.002 0.250±.000 0.099±.000 0.034±.002

w/o Learnable Wavelet 0.118±.007 0.112±.004 0.250±.000 0.105±.002 0.034±.002
w/o STCorrection 0.120±.007 0.113±.004 0.252±.007 0.106±.003 0.043±.001
w/o LMA 0.121±.008 0.114±.005 0.252±.008 0.107±.004 0.044±.002

Context-FID
y STDiffusion 0.068±.004 0.038±.006 0.081±.015 0.231±.023 0.014±.001

w/o Learnable Wavelet 0.068±.004 0.043±.006 0.082±.011 0.265±.027 0.014±.001
w/o STCorrection 0.073±.006 0.046±.007 0.095±.019 0.250±.026 0.017±.004
w/o LMA 0.075±.008 0.045±.007 0.089±.017 0.290±.032 0.019±.004

Correlation Score
y STDiffusion 0.035±.009 0.054±.009 0.802±.170 0.912±.035 0.043±.019

w/o Learnable Wavelet 0.040±.009 0.058±.009 0.820±.185 0.930±.040 0.044±.020
w/o STCorrection 0.042±.009 0.065±.009 0.830±.180 0.940±.045 0.050±.016
w/o LMA 0.040±.010 0.070±.010 0.860±.190 0.960±.050 0.049±.026

Fig. 6. Visualization of learned wavelet functions for Energy, Exchange,
ETTh1, and Weather datasets. The orange line shows the original db3 wavelet,
while the blue line represents the learned wavelet adapted to each dataset.

to sudden spikes. In each case, the learned coefficients hθ

reallocate the emphasis to the most informative frequency
bands, thus improving both the interpretability and the fidelity
of the seasonal decomposition.

F. Ablation Study

Table III presents an ablation study across five datasets,
evaluating discriminative, predictive, Context-FID, and corre-
lation metrics. Across nearly every metric and dataset, the full
STDiffusion model achieves the best performance. In case of
omitting LMA component, we replace it with a regular single
kernel moving average with kernel size of 3. Omitting the
LMA component produces the largest degradation, particularly
noticeable in discriminative scores for ETTh1, ETTh2, Energy,
and fMRI, as well as in both correlation and Context-FID
metrics on Exchange. We use a standard db3 wavelet trans-
formation to replace the learnable wavelet and causes clear
drops in discriminative and predictive metrics—this effect
is most pronounced on ETTh2. Excluding the ST-correction

Fig. 7. Comparison of ETTh1 trends and seasonality with and without
correction. Red dots are original; blue dots are synthetic. The first row shows
PCA results, and the second row shows t-SNE. Left: with correction. Right:
without correction.

module by directly decoding predicted seasonality and trends
from SLBlock and TLBlock also degrades generation quality,
especially in Context-FID and predictive scores across ETTh1,
ETTh2, and fMRI. Interestingly, for energy and exchange
predictive scores, two model configurations tie for the top
performance. This outcome likely arises because, for both
the Energy and Exchange datasets, the spectral characteristics
align closely with those captured by the fixed db3 filter. These
results confirm that each module—LMA, learnable wavelet,
and ST-correction—contributes meaningfully to STDiffusion’s
success, and their combination yields the strongest, most
consistent results across varied time series domains.

To further evaluate the impact of the Seasonal-Trend Cor-
rection module, we visualize the distributional alignment be-
tween real and synthetic samples using both PCA and t-SNE
projections in the ETTh1 dataset, as shown in Fig. 7. The



top row presents PCA plots, while the bottom row shows t-
SNE plots. In both cases, red points represent real samples
and blue points indicate generated sequences. On the left, the
model with correction produces synthetic data that is well-
aligned with the original distribution across both projections,
showing significant overlap in both global and local structure.
In contrast, the model without correction (right column) shows
major divergence, particularly in the PCA space, where the
display collapses due to the existence with extreme outliers
in the synthetic samples. The t-SNE plot further reveals that
the synthetic samples fail to capture the outlying pockets
of the original distribution, instead collapsing toward the
dense central region, along with several outliers. These results
highlight the importance of the Seasonal-Trend Correction
mechanism in stabilizing model performance.

V. DISCUSSION

A. LMA Integration in Forecasting Models

We further evaluate the versatility of our LMA technique
by applying it to two well-established forecasting models:
Autoformer and FEDFormer. We replace the raw data de-
composition and the final seasonal-trend combination stage
used in the models with our LMA. We maintain the original
hyperparameter settings for both models during the evaluation.
The time series forecasting task involves predicting future
values based on observed historical sequences, and its per-
formance is commonly assessed using metrics such as Mean
Squared Error (MSE) and Mean Absolute Error (MAE), where
lower values indicate better predictive accuracy. As shown in
Table IV, the integration of LMA into both models yields
consistent improvements in the ETTh1 and Exchange datasets,
particularly at longer horizons. For example, on Exchange
with a length of 720, Autoformer+LMA reduces the MSE
from 1.447 to 1.037 and the MAE from 0.941 to 0.788. On
ETTh1, similar gains are observed across multiple settings.
These results show that LMA not only strengthens generative
capabilities, but also enhances temporal feature extraction in
forecasting scenarios, confirming its effectiveness as a general-
purpose, model-agnostic component for time series modeling.

TABLE IV
FORECASTING PERFORMANCE (MSE / MAE) ON ETTH1 AND

EXCHANGE. A LOWER MSE INDICATES BETTER PERFORMANCE, AND THE
BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Models Autoformer +LMAa FEDFormer +LMAb

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.449 0.459 0.436 0.446 0.374 0.414 0.375 0.413
192 0.500 0.482 0.452 0.458 0.427 0.448 0.431 0.451
336 0.521 0.496 0.513 0.494 0.457 0.467 0.455 0.464
720 0.514 0.512 0.488 0.489 0.506 0.507 0.495 0.502

E
xc

ha
ng

e 96 0.197 0.323 0.155 0.290 0.148 0.278 0.144 0.277
192 0.300 0.369 0.266 0.377 0.271 0.380 0.265 0.378
336 0.509 0.524 0.439 0.492 0.460 0.500 0.430 0.485
720 1.447 0.941 1.037 0.788 1.195 0.941 1.133 0.807

a Autoformer with LMA technique
b FEDFormer with LMA technique

B. Learnable Wavelet Parameters Study

To investigate whether the wavelet transform stages benefit
from specialized representations, we experimented with using
separate learnable low-pass filters hθ for the decomposition
and reconstruction phases, rather than sharing a single set of
parameters. Interestingly, we observed that these independent
filters converge to remarkably similar patterns during training,
as shown in Fig. 8. However, while their shapes are nearly
identical, there is a notable difference in their magnitude. The
decomposition phase filters exhibited much higher magnitudes.
According to (5), the decomposition with high-magnitude
filters will have strong high-frequency suppression since hθ’s
such filters will trim the high-frequency part. It causes over-
looks in sharp transitions and edges, reducing the ability to de-
tect sudden changes. In contrast, the reconstruction filters show
notably smaller magnitudes. According to (7), the reconstruc-
tion with low-magnitude filters will amplify the decomposed
series since a lower filter amplitude allows broader frequency
passage, introducing noise frequencies. Both phenomena can
negatively impact the training stability; we therefore choose to
use the shared hθ for both decomposition and reconstruction.

Fig. 8. Wavelets Function in Decomposition and Reconstruction

VI. CONCLUSION

In this paper, we have developed and demonstrated the
efficacy of STDiffusion, a novel approach for time series
generation that addresses the inherent challenges of capturing
trends and seasonal patterns in complex datasets. Through a
diffusion-based model, STDiffusion enhances the quality and
realism of generated data by leveraging the gradual denoising
process, which allows for the precise control of generation,
resulting in a highly coherent data distribution. Our results
in diverse datasets highlight the robustness and versatility of
STDiffusion, particularly in scenarios with strong seasonality
and high-dimensional data. The design of a learnable moving
average and wavelet-based frequency analysis has further
improved the model’s ability to generate accurate time series
data. Additionally, the seasonal-trend correction layer plays
a crucial role in aligning and maintaining the correspond-
ing relationship between the generated trend and seasonal
components, ensuring that the synthesized data remain true
to the original distribution. Overall, this work contributes
significantly to the field of time series generation, providing
a powerful tool for both theoretical exploration and practical
applications.
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